|
[1] M. G. Tsipouras, D. I. Fotiadis, and D. Sideris, “An arrhythmia classification system based on the RR-interval signal,” Artificial Intelligence in Medicine, vol. 33, no. 3, pp. 237-250, Mar. 2005. [2] R. D. Throne, J. M. Jenkins, and L. A. DiCarlo, “A comparison of four new time-domain techniques for discriminating monomorphic ventricular tachycardia from sinus rhythm using ventricular waveform morphology,” IEEE Trans. Biomedical Engineering, vol. 38, no. 6, pp. 561-570, Jun. 1991. [3] V. X. Afonso and W. J. Tompkins, “Detecting ventricular fibrillation,” IEEE Engineering in Medicine and Biology Maganize, vol. 14, no.2, pp. 152-159, Mar.-Apr. 1995. [4] A. Amann, R. Tratnig , and K. Unterkofler, “Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators,” BioMedical Engineering OnLine, vol. 4, no. 60, Jun. 1991. [5] J. Park, S. Lee, and M. Jeon, “Atrial fibrillation detection by heart rate variability in Poincare plot,” BioMedical Engineering OnLine, vol. 8, no. 38,pp. 1-12, Dec. 2009. [6] F. Yaghouby, A. Ayatollahi, R. Bahramali, M. Yaghouby, and A.H. Alavi, “Towards automatic detection of atrial fibrillation: A hybrid computational approach,” Comput Biomedical , vol. 40, no. 11-12, pp. 919-930, Nov. 2010. [7] M.S. Islam, N. Ammour, N. Alajlan, and H. Aboalsamh, “Rhythm-based heartbeat duration normalization for atrial fibrillation detection,” Comput Biomedical, vol. 72, pp. 160-169, May 2016. [8] S. W. Chen, P. Clarkson, and Q. Fan, “A robust sequential detection algorithm for cardiac arrhythmia classification,” IEEE Trans. Biomedical Engineering, vol. 43, no. 11, pp. 1120-1124, Aug. 2002. [9] I. Jekova and V. Krasteva, “Real time detection of ventricular fibrillation and tachycardia,” Physiol Measurement, vol. 25, no. 5, pp. 1167-1178, Oct. 2004. [10] E. M. Anas, S. Y. Lee, and M. K. Hasan, “Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions,” BioMedical Engineering OnLine, vol. 9, no. 1,pp. 1-22, 2010. [11] M. A. Arafat, J. Sieed, and M. K. Hasan, “Detection of ventricular fibrillation using empirical mode decomposition and Bayes decision theory,” Computers in Biology and Medicine, vol. 39, no. 11, pp. 1051-1057, Nov. 2009. [12] R. Alcaraz and J. J. Rieta, “Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation,” Physiol Measurement, vol. 29, no. 1, pp. 65-80, Jan. 2008. [13] Q. Li, C. Rajagopalan, and G. D. Clifford, “Ventricular fibrillation and tachycardia classification using a machine learning approach,” IEEE Trans. Biomedical Engineering, vol. 61, no. 6, pp. 1607-1613, Jun. 2014. [14] D. A. Coast, R. M. Stern, G. G. Cano, and S. A. Briller, “An approach to cardiac arrhythmia analysis using hidden Markov models,” IEEE Trans. Biomedical Engineering, vol. 37, no. 9, pp. 826-836, Sep. 1990. [15] Y. Wang, Y. S. Zhu, N. V. Thakor, and Y. H. Xu, “A short-time multifractal approach for arrhythmia detection based on fuzzy neural network,” IEEE Trans. Biomedical Engineering, vol. 48, no. 9, pp. 989-995, Sep. 2001. [16] L. Khadra, A. S. Al-Fahoum, and H. Al-Nashash, “Detection of life-threatening cardiac arrhythmias using the wavelet transformation,” Medical and Biological Engineering and Computing, vol. 35, no. 6, pp. 626-632, Nov. 1997. [17] S. W. Chen, “A two-stage discrimination of cardiac arrhythmias using a total least squares-based prony modeling algorithm,” IEEE Trans. Biomedical Engineering, vol. 47, no. 10, pp. 1317-1327, Oct. 2000. [18] L. Khadra, A. S. Al-Fahoum, and S. Binajjaj, “A quantitative analysis approach for cardiac arrhythmia classification using higher order spectral techniques,” IEEE Trans. Biomedical Engineering, vol. 52, no. 11, pp. 1840-1845, Nov. 2005. [19] X. S. Zhang, Y. S. Zhu, N. V. Thakor, and Z. Z. Wang, “Detecting ventricular tachycardia and fibrillation by complexity measure,” IEEE Trans. Biomedical Engineering, vol. 46, no. 5, pp. 548-555, May 1999. [20] A. Orozco-Duque, F. J. Martinez-Tabares, J. Gallego, C. A. Rodriguez, I. D. Mora, G. Castellanos-Dominguez, and J. Bustamante, “Classification of premature ventricular contraction based on discrete wavelet transform for real time applications,” in Proc. of IEEE Intl. Conf. Pan American Health Care Exchanges, pp. 1-5, Apr.-May 2013. [21] R. J. Martis, C. Chakrabort, and A. K. Ray, Wavelet-based Machine Learning Techniques for ECG Signal Analysis, Springer, 2014. [22] Q. Zhao and L. Zhang, “ECG feature extraction and classification using wavelet transform and support vector machines,” in Proc. of Intl. Conf. on Neural Networks and Brain, vol. 2, pp. 1089-1092, Oct. 2005. [23] S. Faziludeen and P. V. Sabiq, “ECG beat classification using wavelets and SVM,” in Proc. of IEEE Conf. on Information and Communication Technologies, pp. 815-818, Apr. 2013. [24] G. Selvakumar, K. B. Bagan, and B. Chidambarajan, “Wavelet Decomposition for Detection and Classification of Critical ECG Arrhythmias,” in Proc. of Conf. on Mathematics and Computers in Biology and Chemistry, pp. 80-84, Jan. 2007. [25] M. S. Billah, T. B. Mahmud, F. S. Snigdha, and M. A. Arafat, “A novel method to model ECG beats using Gaussian functions,” in Proc. of Intl. Conf. Biomedical Engineering and Informatics, pp. 612-616, Oct. 2011. [26] Y. Lu, J. Y. Yan, and Y. Yam, “A generalized ECG dynamical model with asymmetric Gaussians and its application in model-based ECG denoising,” in Proc. of Intl. Conf. on Biomedical Engineering and Informatics, pp. 1-5, Oct. 2009. [27] R. Adler, R. E. Feldman, and M. S. Taqqu, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Springer Science and Business Media, 1998. [28] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” Computational Learning Theory, pp. 144-152, 1992. [29] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” Journal of Physiology, vol. 160, no. 1, pp. 106-154, Jan. 1962. [30] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193-202, Apr. 1980. [31] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent network architectures,” in Proc. of Intl. Conf. on Machine Learning, Jul. 2015. [32] P. Smolensky, Information Processing in Dynamical Systems: Foundations of harmony theory, MIT Press, 1986. [33] M. Á. Carreira-Perpiñán and G. E. Hinton, “On contrastive divergence learning,” in Proc. of Intl. Conf. on Artificial Intelligence and Statistics, pp. 33-40, Apr. 2005. [34] P. G. Georgiou, P. Tsakalides, and C. Kyriakais, “Alpha-stable modeling of noise and robust time-delay estimation in the presence of impulsive noise,” IEEE Trans. Multimedia, vol. 1, no. 3, pp. 291-301, Sep. 1999. [35] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applications, John Wiley & Sons, Wiley-Interscience, 1995. [36] I. A. Koutrouvelis, “Rregression-type estimation of the parameters of stable laws,” Journal of the American Statistical Association, vol. 75, no. 372, pp. 918-928, Dec. 1980. [37] J. H. McCulloch, “Simple consistent estimators of stable distribution parameters,” Communications in Statistics - Simulation and Computation, vol. 15, no. 4, pp. 1109-1136, 1986. [38] S. Mittnnik and T.Doganoglu, “Computing the probability density function of the stable Paretian distribution,” Mathematical and Computer Modelling, vol. 29, no. 10-12, pp. 235-240, May-Jun. 1999. [39] J. P. Nolan, “An algorithm for evaluating stable densities in Zolotarev's (M) parameterization,” Mathematical and Computer Modelling, vol. 29, no. 10-12, pp. 229-233, 1999. [40] G. B. Moody and R. G. Mark, “The MIT-BIH arrhythmia database on CD-ROM and software for use with it,” Computers in Cardiology, vol. 17, pp. 185-188, Sep. 1990. [41] J. Pan, W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230-236, Mar. 1985.
|