[1] B. Jalali, and S. Fathpour, “Silicon Photonics,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600-4615, 2006.
[2] M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 3, pp. 654-661, 2010.
[3] V. Sorianello, G. De Angelis, T. Cassese, M. Midrio, M. Romagnoli, M. Mohsin, M. Otto, D. Neumaier, I. Asselberghs, J. Van Campenhout, and C. Huyghebaert, “Complex effective index in graphene-silicon waveguides,” Optics Express, vol. 24, no. 26, pp. 29984-29993, 2016/12/26, 2016.
[4] R. Ding, Z. Xuan, P. Yao, D. Prather, M. Hochberg, and T. Baehr-Jones, "100-Gb/s NRZ optical transceiver analog front-end in 130-nm SiGe BiCMOS." pp. 113-114.
[5] Intel. "Intel® Silicon Photonics 100G PSM4 Optical Transceiver Brief," https://www.intel.com/content/www/us/en/architecture-and-technology/silicon-photonics/optical-transceiver-100g-psm4-qsfp28-brief.html.
[6] S. Lischke, D. Knoll, L. Zimmermann, P. Rito, A. C. Ulusoy, A. Awny, D. Petousi, I. G. Lopez, C. Mai, M. Kroh, B. Heinemann, H. Rücker, R. Barth, J. Katzer, M. A. Schubert, M. Kaynak, and A. Mai, "Photonic BiCMOS technology ; Enabler for Si-based, monolithically integrated transceivers towards 400 Gbps." pp. 456-459.
[7] P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics, vol. 3, no. 4-5, 2014.
[8] W. Bogaerts, M. Fiers, and P. Dumon, “Design Challenges in Silicon Photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp. 1-8, 2014.
[9] 蔡明儒, “利用矽光子製程實現光被動元件,” 國立臺灣科技大學碩士論文, 2016.[10] M. Antelius, K. B. Gylfason, and H. Sohlström, “An apodized SOI waveguide-to-fiber surface grating coupler for single lithography silicon photonics,” Optics Express, vol. 19, no. 4, pp. 3592-3598, 2011/02/14, 2011.
[11] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
[12] J. Li, G. Li, X. Zheng, K. Raj, A. V. Krishnamoorthy, and J. F. Buckwalter, “A 25-Gb/s Monolithic Optical Transmitter With Micro-Ring Modulator in 130-nm SoI CMOS,” IEEE Photonics Technology Letters, vol. 25, no. 19, pp. 1901-1903, 2013.
[13] Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Optics Express, vol. 21, no. 24, pp. 29374-29382, 2013/12/02, 2013.
[14] A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Optics Express, vol. 16, no. 16, pp. 12084-12089, 2008/08/04, 2008.
[15] V. Donzella, A. Sherwali, J. Flueckiger, S. Talebi Fard, S. M. Grist, and L. Chrostowski, “Sub-wavelength grating components for integrated optics applications on SOI chips,” Opt Express, vol. 22, no. 17, pp. 21037-50, Aug 25, 2014.
[16] C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE Journal on Selected Areas in Communications, vol. 8, no. 6, pp. 948-964, 1990.
[17] S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver Technology: Comparisons and Applications Requirements,” Journal of Lightwave Technology, vol. 22, no. 1, pp. 281-289, 2004.
[18] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” The Bell System Technical Journal, vol. 48, no. 7, pp. 2071-2102, 1969.
[19] Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Ultralow Power Silicon Photonics Thermo-Optic Switch With Suspended Phase Arms,” IEEE Photonics Technology Letters, vol. 23, no. 8, pp. 525-527, 2011.
[20] H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si Photonic Wire Waveguide Devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1371-1379, 2006.
[21] H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add-drop filter based on silicon grating-assisted contradirectional couplers,” Optics Letters, vol. 38, no. 1, pp. 1-3, 2013/01/01, 2013.
[22] W. Shi, H. Yun, C. Lin, M. Greenberg, X. Wang, Y. Wang, S. T. Fard, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon,” Optics Express, vol. 21, no. 6, pp. 6733-6738, 2013/03/25, 2013.
[23] Y. Zhang, Y. He, J. Wu, X. Jiang, R. Liu, C. Qiu, X. Jiang, J. Yang, C. Tremblay, and Y. Su, “High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations,” Opt Express, vol. 24, no. 6, pp. 6586-93, Mar 21, 2016.
[24] S.-H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society of America B, vol. 27, no. 5, pp. 941-947, 2010/05/01, 2010.
[25] K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,” Electronics Letters, vol. 26, no. 17, pp. 1326-1327, 1990.
[26] J. Yu, Y. Du, Y. Xiao, H. Li, Y. Zhai, J. Zhang, and Z. Chen, “High performance micro-fiber coupler-based polarizer and band-rejection filter,” Optics Express, vol. 20, no. 15, pp. 17258, 2012.
[27] M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Optics Letters, vol. 38, no. 5, pp. 733-735, 2013/03/01, 2013.
[28] C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaitre, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach-Zehnder interferometer,” Nat Commun, vol. 5, pp. 3278, 2014.
[29] X. Xiao, H. Xu, X. Li, Z. Li, T. Chu, Y. Yu, and J. Yu, “High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization,” Optics Express, vol. 21, no. 4, pp. 4116-4125, 2013/02/25, 2013.
[30] H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Optics Express, vol. 15, no. 9, pp. 5711-5720, 2007/04/30, 2007.
[31] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Optics Express, vol. 15, no. 25, pp. 17106-17113, 2007/12/10, 2007.
[32] F. Horst, W. M. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Opt Express, vol. 21, no. 10, pp. 11652-8, May 20, 2013.
[33] I. Lumerical Solutions. https://www.lumerical.com/.
[34] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
[35] Z. Zhu, and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Optics Express, vol. 10, no. 17, pp. 853-864, 2002/08/26, 2002.
[36] M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi, “Compact low loss and broadband hybrid plasmonic directional coupler,” Optics Express, vol. 21, no. 13, pp. 16029-16034, 2013/07/01, 2013.
[37] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Opt Express, vol. 23, no. 3, pp. 3795-806, Feb 09, 2015.
[38] W. Qian, and H. Sailing, “Optimal design of planar wavelength circuits based on Mach-Zehnder Interferometers and their cascaded forms,” Journal of Lightwave Technology, vol. 23, no. 3, pp. 1284-1290, 2005.
[39] M. Tran, J. Hulme, S. Srinivasan, J. Peters, and J. Bowers, "Demonstration of a tunable broadband coupler." pp. 488-489.
[40] G. W. Cong, K. Suzuki, S. H. Kim, K. Tanizawa, S. Namiki, and H. Kawashima, “Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides,” Opt Express, vol. 22, no. 2, pp. 2051-9, Jan 27, 2014.
[41] B. J. Frey, Douglas B. Leviton, and Timothy J. Madison, "Temperature dependent refractive index of silicon and germanium," 2006.