[1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of IEEE, vol. 133, no. 3, pp. 1551-1558, 1966.
[2] 廖顯奎譯,“光纖通訊,”高立圖書有限公司,2005。
[3] M. A. Haidekker, W. J. Akers, D. Fischer and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Optics Letters, vol. 31, no. 17, pp. 2529-2531, 2006.
[4] C. C. Lee, Y. K. Chen and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Optics Letters, vol. 23, no. 5, pp. 358-360, 1998.
[5] 許凱翔,“C頻帶波長可調線性型單縱模光纖雷射的研製,”國立臺灣科技大學碩士論文,2011。[6] Y. Wang, M. Han and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Optics Letters, vol. 31, no. 16, pp. 2408-2410, 2006.
[7] C. H. Yeh, M. C. Lin and S. Chi, “Stabilized and wavelength-tunable S-band erbium-doped fiber ring laser with single-longitudinal-mode operation,” Optics Express, vol. 13, no. 18, pp. 6828-6832, 2005.
[8] J. Sun, X. Yuan, X. Zhang and D. Huang, “Single-longitudinal-mode fiber ring laser using fiber grating-based Fabry–Perot filters and variable saturable absorbers,” Optics Communications, vol. 267, no. 1, pp. 177-181, 2006.
[9] S. Pan, X. Zhao and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Optics Letters, vol. 33, no. 8, pp. 764-766, 2008.
[10] J. Liu, J. Yao, J. Yao and T. H. Yeap, “Single-longitudinal-mode multiwavelength fiber ring laser,” IEEE Photonics Technology Letters, vol. 16, no. 4, pp. 1020-1022, 2004.
[11] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of erbium-doped fiber amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol.3, no. 4, pp. 991-1007, 1997.
[12] C. R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 9, no. 2, pp. 271-283, 1991.
[13] G. Keiser, “Optical fiber communications,” New York, USA : Mcgraw-Hill, 2010.
[14] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, no. 10, pp. 1035-1037, 1993.
[15] R. Hui and M. O’Sullivan, “Fiber optic measurement techniques,” London, UK : Elsevier/Academic Press, 2009.
[16] Y. Zhao, C. Yu and Y. Liao, “Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement,” Optics and Laser Technology, vol. 36, no. 1, pp. 39-42, 2004.
[17] H. Ahmad, A. A. Latif, M. Z. Zulkifli, N. A. Awang and Su. W. Harun, “Temperature sensing using frequency beating technique from single-longitudinal mode fiber laser,” IEEE Sensors Journal, vol. 12 , no. 7, pp. 2496-2500, 2012.
[18] L. H. Liu, H. Zhang, Q. D. Zhao, Y. Liu and F. Li, “Temperature-independent FBG pressure sensor with high sensitivity,” Optical Fiber Technology, vol.13, no. 1, pp. 78-80, 2007.
[19] R. Kashyap, “Fiber Bragg Gratings,” San Diego, USA:Academic Press, 1999.
[20] 王祥,“線性型單縱模光纖雷射的研製,”國立臺灣科技大學碩士論文,2010。[21] S. Yamashita, K. Hotate and M. Ito, “Polarization properties of a reflective fiber amplifier employing a circulator and a faraday rotator mirror,” IEEE/OSA Journal of Lightwave Technology, vol. 14, no. 3, pp. 385-390, 1996.
[22] Y. Takushima, S. Yamashita, K. Kikuchi and K. Hotate, “Polarization-stable and single-frequency fiber lasers,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 5, pp. 661-669, 1998.
[23] J. C. Libatique, L. Wang and R. K. Jain, “Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,” Optics Express, vol. 10, no. 2, pp. 1503-1507, 2002.
[24] R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper and D. C. Hanna, ”Single-frequency ytterbium-doped fiber laser stabilized by spatial hole burning,” Optics Letters, vol. 22, no. 3, pp. 40-42, 1997.
[25] S. Yang, K. K. Y. Cheung, Y. Zhou and K. K. Y. Wong, “Tunable single-longitudinal-mode fiber optical parametric oscillator,” Optics Letters, vol. 35, no. 4, pp. 481-483, 2010.
[26] K. K. Y. Cheung, S. Yang, Y. Zhou and K. K. Y. Wong, “Frequency swept fiber ring laser based on optical parametric process with single-longitudinal-mode Operation,” IEEE Photonics Technology Letters, vol.23, no. 8, pp. 203-205, 2011.
[27] S. O. Kasap, “Optoelectronics and photonics,” New Jersey, USA: Prentice Hall, 2001.
[28] Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” IEEE/OSA Journal of Lightwave Technology, vol. 24, no. 2, pp. 2179-2183, 2006.
[29] N. Kishi and T. Yazaki, “Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning,” IEEE Photonics Technology Letters, vol. 11, no. 2, pp. 182-184, 1999.
[30] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming and D. N. Payne, “ Stable single-frequency traveling-wave fiber loop laser with integral sturable-absorber-based tracking narrow-band filter,” Optics Letters, vol. 20, no. 6, pp. 875-877, 1995.
[31] F. Lie´geois, Y. Hernandez, G. Peigne´, F. Roy and D. Hamoir, “High-efficiency, single-longitudinal-mode ring fibre laser,” Electronics Letters, vol. 41, no. 3, pp. 729-730, 2005.
[32] Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 22-24, 2005.
[33] D. Derickson, “Fiber optic test and measurement,” New Jersey, USA: Prentice Hall, 1998.
[34] S. K. Liaw, W. Y. Jang, C. J. Wang and K. L. Hung, “Pump efficiency improvement of a C-band tunable fiber laser using optical circulator and tunable fiber gratings,” Applied Optics, vol. 46, no. 11, pp. 2280-2282, 2007.
[35] W. Liu, M. Jiang, D. Chen and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” IEEE/OSA Journal of Lightwave Technology, vol. 27, no. 5, pp. 4455-4459, 2009.
[36] O. Deparis, R. Kiyan, S. A. Vasiliev, O. I. Medvedkov, E. M. Dianov, O. Pottiez, P. Mégret and M. Blondel, “Polarization-maintaining fiber Bragg gratings for wavelength selection in actively mode-locked Er-doped fiber lasers,” IEEE Photonics Technology Letters, vol. 13, no. 7, pp. 284-286, 2001.
[37] J. R. Qian, J. Su and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in single longitudinal mode,” Optics Communications, vol. 281, no. 2, pp. 4432-4434, 2008.
[38] S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intra-cavity etalon and cooled by liquid nitrogen,” Electronics Letters, vol. 32, no. 3, pp. 1298-1299, 1996.
[39] T. Zhu, X. Bao, and L. Chen, “A Single Longitudinal-Mode Tunable Fiber Ring Laser Based on Stimulated Rayleigh Scattering in a Nonuniform Optical Fiber,” Journal of Lightwave Technology, vol. 29, no. 12, pp. 1802-1807, 2011.
[40] C. Wu, F. Chen, Y. Ju, and Y. Wang, “High-power single-longitudinal-mode operation of Tm:YAG laser using Fabry-Perot etalons and volume Bragg grating,” Optics Communications, vol. 285, pp. 2693-2696, 2012.
[41] S. K. Liaw, and G. S. Jhong, “Tunable Fiber Laser Using a Broad-Band Fiber Mirror and a Tunable FBG as Laser-Cavity Ends,” IEEE Journal of Quantum Electronics, vol. 44, no. 6, pp. 520-527, 2008.
[42] M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Optics Express, vol. 20, no. 21, pp. 23367-23373, 2012.
[43] K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Optics Express, vol. 20, no. 13, pp. 13958-13965, 2012.
[44] N. Kishi, and T. Yazaki, “Frequency Control of a Single-Frequency Fiber Laser by Cooperatively Induced Spatial-Hole Burning,” IEEE Photonics Technology Letter, vol. 11, no. 2, pp. 182-184, 1999.
[45] Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Optics Letters, vol. 20, no. 8, pp. 875-877, 1995.
[46] P. Xu, Z. Hua, M. Ma, N. Jiang, and Y. Hu, “Mapping the optical frequency stability of the single-longitudinal-mode erbium-doped fiber ring lasers with saturable absorber,” Optics and Laser Technology, vol. 49, no.13, pp. 337-342, 2013.
[47] X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Optics Express, vol. 17, no. 24, pp. 21773-21781, 2009.
[48] S. K. Liaw, S. Wang, C. S. Shin, N. K. Chen, K. C. Hsu, A. Manshina, Y. Tver’yanovich, C. F. Su, and L. K. Wang, “Single-longitudinal-mode Linear-cavity Fiber Laser Using Multiple Subring Cavities,” Laser Physics, vol. 20, no. 7, pp. 1608-1611, 2010.
[49] S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Optics and Laser Technology, vol. 47, no. 2, pp. 102-106, 2013.
[50] S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely Tunable Single Longitudinal Mode Fiber Laser With Cascaded Fiber-Ring Secondary Cavity,” IEEE Photonics Technology Letters, vol. 25, no. 4, pp. 323-326, 2013.
[51] F. D. Muhammad, M. Z. Zulkifli, A. A. Latif, S. W. Harun, and H. Ahmad, “Graphene-based saturable absorber for single-longitudinal-mode operation of highly doped erbium-doped fiber laser,” IEEE Photonics Journal, vol. 4, no. 2, pp. 467-475, 2012.
[52] M. Ma, Z. Hu, P. Xu, W. Wang, and Y. Hu, “Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer,” Applied optics, vol. 51, no. 30, pp. 7420-7425, 2012.
[53] W. J. Hesse, N. V. S. Mumford Jr., “Jet propulsion for application,” 大學圖書出版社, 1982.
[54] E. H. J. Pallett, and V. Brown, “Aircraft instruments principles and applications,” 滄海書局, 1972.
[55] 范錦程,“具寬頻帶波長可調光纖光柵之 C+L band 光纖雷射之研製”,國立臺灣科技大學碩士論文,2014。[56] 鄧正隆著,“慣性技術,”崧博出版,2012。
[57] P. Z. Zatta, and D. C. Hall, “Ultra-high-stability two-stage superfluorescent fiber sources for fiber optic gyroscopes,” Electronics Letters, vol. 38, no.9, pp. 406-408, 2002.
[58] H. J. Patrick, A. D. Kersey, W. K. Burns, and R. P. Moeller, “Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation,”Electronics Letters, vol. 33, no. 24, pp. 2061-2063, 1997.
[59] T. P. Gaiffe, P. Simonpietri, J. Morisse, N. Cerre, E. M. Taufflieb, and H. C. Lefevre, “Wavelength stabilization of an Erbium-doped fiber source with a fiber Bragg grating for high-accuracy FOG,” SPIE Fiber Optic Gyros: 20th Anniversary Conference, pp. 375-380, 1996.
[60] W. Huang, X. Wang, B. Zheng, H. Xu, C. Ye, and Z. Cai, “Stable and wideband L-band Erbium superfluorescent fiber source using improved bi-directional pumping configuration,”Optics Express, vol. 15, no. 15, pp. 9778-9783, 2007.
[61] K. A. Fesler, M. J. F. Digoneet, B. Y. Kim, and H. J. Shaw, “Stable fiber-source gyroscope,” Optics Letters, vol. 15, no. 22, pp. 1321-1323, 1990.
[62] P. R. Morkel, E. M. Taylor, J. E. Townsend, and D. H. Payne, “Wavelength stability of Nd3+-doped fibre fluorescent sources,” Electronics Letters, vol. 26, no. 13, pp. 873-875, 1990.
[63] P. F. Wysocki, M. J. F. Digonnet, B. Y. Kim, and H. J. Shaw, “Characteristics of Erbium-doped superfluorescent fiber sources for interferometric sensor application,” IEEE Journal of Lightwave Technology, vol. 12, no. 3, pp. 550-567, 1994.
[64] Y. Li, M. Jiang, C.X. Zhang and H. J. Wu, “High stability Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technology Letters, vol.25, no.8, pp. 731-733, 2013.
[65] J.L. Chang and M.Q. Tan, “Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, vol.32, no. 10, pp. 104007-1-5, 2011.
[66] A. Wang, “High stability Er-doped superfluorescent fiber Source improved by incorporating bandpass filter,” IEEE Photonics Technology Letters, vol. 23, no.4, pp. 227-229, 2011.
[67] X. Wu, L. Zhang, C. X. Liu and S. C. Ruan, “High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber,” Applied Physics B, vol. 114, no. 3, pp. 433-438, 2014.
[68] W. T. Guo, F. Du, M. Q. Tan, J. Jiao and X.F. Guo, “Theoretical study on erbium ytterbium co-doped super-fluorescent fiber source,” Journal of Semiconductors, vol. 37, no.1, pp. 014010, 2016.
[69] K. E. Riumkin, M. A. Mel'kumov, A. V. Shubin, S. V. Firstov, I. A. Bufetov, V. F. Khopin, A. N. Gur'yanov and E. M. Dianov, “Superfluorescent 1.34 μm bismuth-doped fibre source,” Quantum Eletronics, vol. 44, no.7, pp. 700-702, 2014.
[70] T. Komljenovic and J. E. Bowers, “High temperature stability, low coherence and low relative intensity noise semiconductor sources for interferometric sensors,” Optics Express, vol. 24, no.20, pp. 22777-22787, 2016.
[71] K.A. Fesler, M.J.F. Digoneet, B.Y. Kim and H.J. Shaw, “Stable fiber-source gyroscope,” Optics Letters, vol. 15, no.22, pp. 1321-1323, 1990.
[72] H. Wang, H.W. Chiu, S. K. Liaw and C. C. Fan, “Saturable absorber–based single longitudinal mode tunable fiber laser using a Faraday rotator mirror as the rear cavity end,” Journal of Lightwave Technology, vol. 12, no.3, pp. 116118, 2014.
[73] P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim and H.J.Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor application,” Journal of Lightwave Technology, vol. 12, no.3, pp. 550-567, 1994.
[74] L.A. Wang and C.D. Su, “Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications,” Journal of Lightwave Technology, vol.17, no.11, pp. 2307-2315, 1999.
[75] T. S. Peng, Y. W. Huang, L. A. Wang, R. Y. Liu, and F. I. Chou, “Photo-annealing effects on gamma radiation induced attenuation in Erbium doped fibers and the sources using 532-nm and 976-nm lasers,” IEEE Transactions on Nuclear Science, vol. 57, no. 4, pp. 2327-2331, 2010.
[76] T. S. Peng, L. A. Wang, and R. Y. Liu, “A radiation-tolerant superfluorescent fiber source in double-pass backward configuration by using reflectivity-tuning method,” IEEE Photonics Technology Letters, vol. 23, no. 20, pp. 1460-1462, 2011.
[77] T. S. Peng, and L. A. Wang, “Radiation-tolerant superfluorescent fiber sources for high-performance fiber-optic gyroscopes working under gamma irradiation higher than 200 krad,” IEEE Photonics Technology Letters, vol. 24, no. 15, pp. 1340-1342, 2012.
[78] S. H. Chang, R. Y. Liu, C. E. Lin, F. I. Chou, C. Y. Tai, and C. C. Chen, “Photo-annealing effect of gamma-irradiated Erbium-doped fibre by femtosecond pulsed laser,” Journal of Physics D: Applied Physics, vol. 46, no. 49, pp. 29827, 2013.
[79] Y. H. Yang, X. X. Su, and W. Yang, “Radiation-induced attenuation self-compensating effect in super-fluorescent fiber source,” Chinese Physics B, vol. 23, no. 9, pp. 094213, 2014.
[80] P. F. Wysocki, M. J. F. Digoneet, and B. Y. Kim, “Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm,” Optics Letters, vol. 16, no. 12, pp. 961-963, 1991.
[81] 吳宗遠,“以複合材料補償光纖光柵因溫度造成的波長漂移之改良式機制”,國立臺灣大學碩士論文,2003。[82] D. C. Hall and W. K. Burns, “Wavelength stability optimization in Er3+-doped superfluorescent fibre sources,” Electronics Letters, vol. 30, no. 8, pp. 653-654, 1994.
[83] M. K. Jazi, S. Shahi, M. J. Hekmat, H. Saghafifar. A. T. Khuzani, H. Khalilian, and M. D. Baghi, “The evaluation of various designs for a C and L band superfluorescent source based Erbium doped fiber,” Laser Physics, vol. 23, no. 6, 2013.
[84] W. Wang, X. F. Wang, and J. L. Xia, “The influence of Er-doped fiber source under irradiation on fiber optic gyro,” Optical Fiber Technology, vol. 18, no. 1, pp. 39-43, 2012.
[85] 呂宗祐,“抗輻射之低溫度係數平坦光源研製與即時監控”,國立臺灣科技大學碩士論文,2013。[86] M. N. Armenise, C. Ciminelli, F. Dell’Oilo, and V. M. M. Passaro, “Advances in gyroscope technologies,” Springer, Berlin, Germany, 2010.
[87] S. Merlo, M. Norgia, and S. Donati, “Fiber gyroscope principles,” Handbook of Fiber Optic Sensing Technology, 2000.
[88] M. A. Terrel, M. J. F. Digonnet, and S. H. Fan, “Resonant fiber optic gyroscope using an air-core fiber,”IEEE Journal of Lightwave Technology, vol. 30, no. 7, pp. 931-937, 2012.
[89] F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics Letters, vol. 16, no. 4, pp. 229-231, 1991.
[90] A.Morana, S. Giard, E. Marin, C. Marcandella, P. Paillet, J. Perisse, J. R. Mace, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels,” Optics Letters, vol. 39, no. 18, pp. 5313-5316, 2014.