|
[1] Semico Res. Corp., Phoenix, AZ, USA, ASIC IP Rep., 2007. [Online]. Available: https://semico.com/content/semico-systems-chip-%E2%80%93-braver-new-world [2] Richard Bowles, “Memory resiliency,” Intel® Technology Journal, vol. 17, issue. 1, pp. 1-200, 2013. [3] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I: The three radiation sources,” IEEE Trans. Device and Materials Reliability, vol. 1, no. 1, pp. 17-22, Mar. 2001. [4] D. C. Bossen, and M. Y. Hsiao, “A system solution to the memory soft error problem,” IBM Journal of Research and Development, vol. 24, no. 3, pp. 390-397, May 1980. [5] W. Kuo, W. T. K. Chien, and T. Kim, “Reliability, yield, and stress burn-in,” Kluwer Academic Publishers, Boston, 1998 [6] V. Schober, S. Paul, and O. Picot, “Memory built-in self-repair using redundant words,” in Proc. Int’l Test Conf. (ITC), pp. 995-1001, Oct. 2001. [7] T. Kawagoe, J. Ohtani, M. Niiro, T. Ooishi, M. Hamada, and H. Hidaka, “A built-in self-repair analyzer (CRESTA) for embedded DRAMs,” in Proc. Int’l Test Conf. (ITC), pp. 567-574, Oct. 2000. [8] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu, “Built-in redundancy analysis for memory yield improvement,” IEEE Trans. Rel., vol. 52, no. 4, pp. 386–399, Dec. 2003. [9] S. K. Lu, C. L. Yang, Y. C. Hsiao, and C. W. Wu, “Efficient BISR techniques for embedded memories considering cluster faults,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 2, pp. 184–193, Feb. 2010. [10] M. Lee, L. M. Denq, and C. W. Wu, “A memory built-in self-repair scheme based on configurable spares,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 6, pp. 919–929, Jun. 2011 [11] Y. T. J. Chen, J. F. Li, and T. W. Tseng, “Cost-efficient built-in redundancy analysis with optimal repair rate for RAMs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 31, no. 6, pp. 930–940, June 2012. [12] W. Kang, H. Cho, J. Lee, and S. Kang, “A BIRA for memories with an optimal repair rate using spare memories for area reduction,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 11, pp. 2336–2349, Nov. 2014. [13] A. J. van de Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993. [14] S. Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays,” IEEE Design and Test of Computers, vol. 4, no. 1, pp. 24-31, June 1987. [15] T. H. Wu, P. Y. Chen, M. Lee, B. Y. Lin, C. W. Wu, C. H. Tien, H. C. Lin, H. Chen, C. N. Peng, and M. J. Wang, “A memory yield improvement scheme combining built-in self-repair and error correction codes,” in Proc. Int. Test Conf., pp. 1-9, Nov. 2012. [16] S. K. Lu, H. H. Huang, J. L. Huang, and P. Ning, “Synergistic reliability and yield enhancement techniques for embedded SRAMs,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 1, pp. 165–169, Jan. 2013. [17] C. Argyrides, P. Reviriego, and J. A. Maestro, “Using single error correction codes to protect against isolated defects and soft errors,” IEEE Trans. Rel., vol. 62, no. 1, pp. 238–243, Mar. 2013. [18] S. K. Lu, C. J. Tsai, and M. Hashizume, “Enhanced built-in self-repair techniques for improving fabrication yield and reliability of embedded memories” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 6, pp. 921–932, June 2016. [19] Ashok K. Sharma, “Static random access memory technologies,” Advanced Semiconductor Memories:Architectures, Designs, and Applications, Wiley-IEEE Press eBook Chapters, pp. 19-127, 2003. [20] J. M. Rabaey, A.Chandrakasan, and B. Nikolic “Digital integrated circuits,” Pearson Education Taiwan Ltd. [21] Michael L. Bushnell, Vishwani D. Agrawal, “Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits,” Kluwer Academic Publishers, 2000. [22] J. van de Goor, Zai Al-Ars, “Functional memory faults: a formal notation and a taxonomy,” in Proc. IEEE VLSI Test Symposium, pp. 281-289, Apr. 2000. [23] R. Nair, S. M. Thatte, and J. A. Abraham, “Efficient algorithms for testing SRAMs,” IEEE Trans. on Computers, vol. C-27, no. 6, pp. 572-576, June 1978. [24] R. Dekker, F. Bennker, and L. Thijssen, “Fault modeling and test algorithm development for static random access memories,” in Proc. Int’l Test Conf., pp. 343-352, Sep. 1988. [25] A. J. Van De Goor, “Using march tests to test SRAMs,” IEEE Design & Test of Computers, vol. 10, no. 1, pp. 8-14, Mar. 1993. [26] M. L. Bushnell and V. D. Agrawal, “Essentials of electronic testing,” Kluwer Academic Publishers, 2000. [27] http://www.syntest.com/ [28] http://www.hoy-tech.com/ [29] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system speeds test and repair of redundant memories,” Electronics, pp. 175-179, Jan. 1984. [30] R. W. Hamming, “Error detecting and error correcting codes,” Bell System Tech. J., vol. XXVI, no. 2, pp. 147-160, Apr. 1950. [31] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006. [32] C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated circuit yield statistics,” Proceedings of the IEEE, vol. 71, no. 4, pp. 453-470, Apr. 1983. [33] R. F. Huang, J. F. Li, J. C. Yeh, and C. W. Wu, “A simulator for evaluating redundancy analysis algorithms of repairable embedded memories,” in Proc. IEEE Int. Workshop Mem. Technol., Des. Testing (MTDT), pp. 68–73, July 2002.
|