跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 10:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊浤毅
研究生(外文):Hong-Yi Yang
論文名稱:以負實導之非福斯特元件實現微型化天線之研究
論文名稱(外文):A Study of Miniaturized Antennas Using Non-foster Elements with Negative Conductance
指導教授:馬自莊
指導教授(外文):Tzyh-Ghuang Ma
口試委員:賴季暉林坤佑陳筱青廖文照馬自莊
口試委員(外文):Ji-Huei LaiKun-You LinSiao-Jing ChenWen-Jhao LiaoTzyh-Ghuang Ma
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:非福斯特元件負實部單端負阻抗轉換器倒F天線槽孔天線穩定性耦合效應
外文關鍵詞:inverted-F antennamutual couplingnegative conductancenon-foster elementssingle-ended NICslot antennastability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主旨,以實際應用為前提,研製兩款負實部特性之非福斯特元件整合於天線之微型化設計。該設計之基礎,乃因非福斯特電路具有負電抗特性,若作為匹配網路,將可打破以往傳統匹配網路所帶來的頻寬限制;而匹配電路之負實部相較於正實部來說,其物理意義可為天線提供能量,將可額外提升天線效能。此電路可透過負阻抗轉換器與電抗負載元件來實現,整體來說,兩款天線設計再加入負阻抗轉換器作為匹配網路之後,皆具有尺寸縮小及頻寬增加之特點。
本論文首先整理現今負阻抗轉換器該領域之已有理論,針對單端負阻抗轉換器進行詳細介紹。首先將介紹倒F天線與單端負阻抗轉換器進行匹配設計,經充分考量其元件真實響應、走線耦合與穩定性等非理想效應,乃將電路與天線整合以完成最終設計。接著為避免引入穩定電阻,透過設計槽孔天線之輸入導納響應,成功提升電路之穩定性,並與負實部之單端負阻抗轉換器進行整合,並驗證負實部電導改善天線效能之能力。
綜上所述,本論文藉由正確的設計流程,成功實現負阻抗轉換器之電路,也透過與天線整合設計,驗證了非福斯特電路確實有小型化且增加天線操作頻寬的效果,並發現負實部與天線整合應用之潛力,更證實了負阻抗轉換器在天線工程應用中的可行性和有效性。
This study focuses on the development of two non-foster miniaturized antennas for practical applications. Two non-foster elements, sourced by negative impedance converters (NICs), were designed and integrated with electrically small antennas to achieve miniaturized non-foster antennas. Benefitting from the negative susceptances characteristic of the non-foster circuits, the operating bandwidth of traditional antenna matching networks is broadened and the performance of antenna can be enhanced.
A design flow for integrating NICs with electrically small antennas is reviewed, summarized, and investigated. The theoretical background of the single-ended NICs is firstly presented. The single-ended NIC is then integrated with a single-ended IFA in the first design. In order to avoid the introduction of the stable resistor, in the second design, a slot antenna is utilized to compensate the negative resistance of the NIC; the antenna performance is hence significantly improved. The full consideration of real component response, stability, and other non-ideal effects of the NICs were carefully investigated during fabricating and measuring antennas. Good agreement between simulated and measured results was obtained. The experimental results show the improvement in the impedance bandwidth and antenna performance. It confirms the feasibility, effectiveness of the non-foster elements and the potential of the integration of negative impedance converters with antenna engineering in practical applications.
摘要 II
Abstract III
誌謝 IV
目錄 VI
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究動機與目的 1
1.2文獻探討 1
1.3研究貢獻 3
1.4論文組織 4
第二章 單端負阻抗轉換器 5
2.1 前言 5
2.2 單端負阻抗轉換器之架構 5
2.3 負阻抗轉換器整合於天線之原理 10
2.4 結語 12
第三章 單端負阻抗轉換器整合於IFA天線設計 13
3.1 前言 13
3.2 單端負阻抗轉換器整合於IFA天線設計 13
3.2.1 單端負阻抗轉換器整合於IFA天線之設計流程 13
3.2.2 IFA天線之設計 15
3.2.3以傳統匹配電路進行天線微型化 17
3.2.4負實部之單端負阻抗轉換器設計 20
3.2.4以單端負阻抗轉換器匹配電路進行天線微型化 27
3.3 天線與電路整合實測 33
3.4 結語 40
第四章 單端負阻抗轉換器整合於槽孔天線設計 41
4.1 前言 41
4.2 單端負阻抗轉換器整合於槽孔天線設計 41
4.2.1 單端負阻抗轉換器整合於槽孔天線之設計流程 41
4.2.2 負實部之單端負阻抗轉換器之設計 42
4.2.3槽孔天線設計 47
4.2.4天線與電路整合實測 58
4.4 結語 74
第五章 結論 76
5.1總結 76
5.2未來發展 77
參考文獻 78
[1] F. Kuroki and H. Ohta, “Operational frequency tuning for meander-line antenna fed by coplanar waveguide with finite ground plane,” in IEEE APMC., Yokohama, , pp. 939-942, Dec. 2006.
[2] O. Losito, V. Dimiccoli, and D. Barletta, “Meander-line inverted F antenna designed using a transmission line model,” in Proc. 8th Eur. Conf. Antennas and Propagation (EUCAP), pp. 1370-1373, Apr. 2014.
[3] J. Faerber and M. P. Y. Desmulliez, “Conformal meander shaped antenna for biotelemetry in endoscopic capsules,” Antennas and Propagation Conference, LAPC 2015. Loughborough, pp. 1-4, 2015.
[4] M. S. Sharawi, Y. S. Faouri, and S. S. Iqbal, “Design of an electrically small meander antenna for LTE mobile terminals in the 800 MHz band,” GCC Conference and Exhibition (GCC), 2011 IEEE, pp. 213-216 , Feb. 2011.
[5] R. M. Foster, “A Reactance Theorem,” Bell System Tech. J., vol. 3, pp. 259-267, Apr. 1924.
[6] J. G. Linvill, “Transistor negative-impedance converters,” Proc. IRE, vol. 41, no. 6, pp. 725-729, Jun. 1953.
[7] K-.S-. Song and R. G. Rojas, “Non-foster Impedance Matching of Electrically Small,” IEEE Antennas and Propagation Society International Symposium., pp. 1-4 , 1968.
[8] S. E. Sussman-Fort and R. M. Rudish, “Non-foster impedance matching for transmit applications,” in Proc. IEEE Int. Workshop Antenna Technol. Small Antennas Novel Metalmater., pp. 53–56, 2006.
[9] T. Kaneko and Y. Horii, “Influence of transistor packages and circuit dimensions for accurate design of negative impedance converters,” in 2013 Asia-Pacific Microw. Conf. Proceedings, pp. 1194-1197, Nov. 2013.
[10] W. Wang, J. Geng, R. Jin, and X. Liang, “Design of a 600 MHz Non-foster dipole,” Int. Antenna Technol. Workshop (IWAT), Sydney, N.S.W., Australia, pp. 351-354, Mar. 2014.
[11] A. M. Elfrgani and R. G. Rojas, “Successful realization of Non-foster circuits for wide-band antenna applications,” IEEE MTT-S International Microwave Symposium., pp. 1-4, 2015.
[12] Q. Tang and H. Xin, “Stability analysis and parasitic effects of negative impedance converter circuits,” IEEE MTT-S International Microwave Symposium., pp. 1-4, 2015.
[13] H. Mirzaei and G. V. Eleftheriades, “A resonant printed monopole antenna with an embedded Non-foster matching network,” IEEE Trans. on antennas and prop., vol. 61, pp. 5363-5371, 2013.
[14] D. S. Nagarkoti, K. Z. Rajab, and Y. Hao, “Design and stability of negative impedance circuits for Non-foster matching of a monopole antenna,” in Proc. 8th Eur. Conf. Antennas and Propagation (EUCAP), pp. 2707-2709, 2014.
[15] K. Eguchi and T. Fukusako, “Stability analysis of negative impedance converter,” in Proc. IEEE Int .Conf. on Computational Electromagnetics (ICCEM), pp. 171-172, 2017.
[16] T. Kaneko, S. Takagi, Y. Horii, and M. Akiyama, “Novel negative impedance converter with an emitter follower circuit for stable Non-foster elements,” IEEE European Microwave Conf., pp. 988-991, 2014.
[17] D. S. Nagarkoti, Y. Hao, and K. Z. Rajab, “Noise measurements of a Non-foster circuit for matching of a receiver antenna,” in Proc. 9th Eur. Conf. Antennas and Propagation (EUCAP), pp. 1-3, 2015.
[18] C. Stedler, V. Wienstroer, and R. Kronberger, “Noise performance of an antenna matching network with negative-impedance converter (NIC),” in Proc. 8th Eur. Conf. Antennas and Propagation (EUCAP), pp. 2709-2713, 2014.
[19] D. S. Nagarkoti, Y. Hao, and K. Z. Rajab, “Radiation-Q bound of a small Non-foster antenna,” in IEEE Int. Symposium on Ant. and Prop. (APSURSI), pp. 187-188, 2016.
[20] M. M. Jacob, J. Long, and D. F. Sievenpiper, “Noise in Non-foster antenna matching circuits,” in IEEE Int. Symposium on Ant. and Prop. (APSURSI), pp. 2205-2206, 2013.
[21] K. Jagodziṅska, “On the extending bandwidth of electrically small antenna using negative impedance converter,” in Proc. 9th Eur. Conf. Antennas and Propagation (EUCAP), pp. 2709-2713, 2015.
[22] H. Mirzaei and G. V. Eleftheriades, “A wideband metamaterial-inspired compact antenna using embedded Non-foster matching,” in IEEE Int. Symposium on Ant. and Prop. (APSURSI), pp. 1950-1953, 2011.
[23] G. Mishra, S. K. Sharma, and G. Rebeiz, “Non-foster matching of electrically small bowtie antenna convering 600 MHz to 1100 MHz,” Proc. of IEEE Int. Symposium on ant. and prop.& USNC/URSI National Radio Science Meeting, pp. 1250-1251, 2015.
[24] N. Zhu and R. W. Ziolkowski, “Active metamaterial-inspired broad bandwidth, efficient, electrically small antennas,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1582-1585, 2011.
[25] N. Zhu and R. W. Ziolkowski,“Broad-bandwidth, electrically small antenna augmented with an internal Non-foster element,” IEEE Ant. and Wireless Lett., vol. 11, pp. 1116-1120, 2012.
[26] M-.C-. Tang, T-. Shi and R. W. Ziolkowski, “Electrically Small, Broadside Radiating Huygens Source Antenna Augmented With Internal Non-foster Elements to Increase Its Bandwidth,” IEEE Ant. and Wireless Lett., vol. 16, pp. 712-715, 2017.
[27] S. Saadat, H. Aghasi, E. Afshari, and H. Mosallaei, “Low-power negative inductance integrated circuits for GHz applications,” IEEE Microwave and Wireless Components Lett., vol. 25, pp. 118-120, 2014.
[28] B. R. Franciscatto, H. Adel, M. H. C. Dias, and T-. P-. Vuong, “A compact IFA-based dual-band planar antenna for Wifi USB dongles,” in Proc. 8th Eur. Conf. Antennas and Propagation (EUCAP), pp. 325-329, 2014.
[29] A. Munir and J. Soba, “Multiband Printed Antenna Composed of An Array of Split Ring Resonators,” in Proc. European Radar Conf. (EuRAD), pp. 385-388, 2015.
[30] S. Verma and P. Kumar,“Compact arc-shaped antenna with binomial curved conductor-backed plane for multiband wireless applications,” in Proc. IET Microwaves Antennas Propag., vol. 9, pp. 351-359, 2015.
[31] P-.W-. Lin and K-.L-. Wong, “Simple Monopole Slot Antenna for WWAN/LTE Handset,” in IEEE APMC., pp.829-832, 2011.
[32] J. D. Kraus and R. J. Marhefka, Antennas for All Applications, 3rd ed., Mcraw-Hill, New York, 2002.
[33] Datasheet of Renesa 2SC5007 [Online]. Available: http://documentation.renesas.com/doc/YOUSYS/document/P10386EJ2V0DS00.pdf
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top