[1] P. Ganesan, V. Rajini, B. S. Sathish and K. B. Shaik, “HSV color space based segmentation of region of interest in satellite images”, International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 101 – 105, 2014.
[2] T. W. Chen, Y. L. Chen and S. Y. Chien, “Fast image segmentation based on K-Means clustering with histograms in HSV color space”, IEEE Workshop on Multimedia Signal Processing, pp. 322 – 325, 2008.
[3] S. Li and G. Guo, “The application of improved HSV color space model in image processing”, International Conference on Future Computer and Communication, vol. 2, pp. 10 – 13, 2010.
[4] W. Chen, T. Qu, Y. Zhou, K Weng, G. Wang and G. Fu, “Door recognition and deep learning algorithm for visual based robot navigation”, 2014 IEEE International Conference on Robotics and Biomimetics, pp. 1793 – 1798 , 2014.
[5] D. Luo, F. Hu, W. Liu and X. Wu, “Robot learns the concept of direction through motion activity”, 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics, pp. 87 – 94, 2016.
[6] S. Contreras and F. D. L. Rosa, “Using deep learning for exploration and recognition of objects based on images”, 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium, pp. 1 – 6, 2016.
[7] K. Noda, H. Arie, Y. Suga and T. Ogata, “Multimodal integration learning of robot behavior using deep neural networks”, Robotics and Autonomous Systems, pp. 721 – 736, 2014.
[8] D. N. T. How, K. S. M. Sahari, H. Yuhuang and L. C. Kiong, “Multiple sequence behavior recognition on humanoid robot using long short-term memory”, Robotics and Manufacturing Automation, pp. 109 – 114, 2014.
[9] M. Alam, L. Vidyaratne, T. Wash and K. M. Iftekharuddin, “Deep SRN for robust object recognition: a case study with NAO humanoid robot”, SoutheastCon, pp. 1 – 17, 2016.
[10] J. Hwang and J. Tani, “Seamless integration and coordination of cognitive skills in humanoid robots: a deep learning approach”, IEEE Transactions on Cognitive and Developmental Systems, pp. 1 – 1, 2017.
[11] H. F. M. Zaki, F. Shafait and A. Mian, “Learninga deeply supervised multi-modal RGB-D embedding for semantic scene and object category recognition”, Robotics and Autonomous Systems, vol. 92, pp. 1 – 52, 2017.
[12] 李庚諺,「影像定位與同步建圖技術於導航系統之應用」,碩士學位論文,國立成功大學,民國101年。[13] 林姿吟,「基於立體視覺的3D影像定位」,碩士學位論文,國立臺灣科技大學,民國100年。[14] 邱治華,「結合尺度不變特徵與貝氏定理的影像定位與導航系統設計」,碩士學位論文,朝陽科技大學,民國97年。[15] S. Thompson and S. Kagami, “Humanoid robot localisation using stereo vision”, IEEE-RAS International Conference on Humanoid Robots, pp. 19 – 25, 2005.
[16] I. Awaludin, P. Hidayatullah, J. Hutahaean and D. G. Parta, “Detection and object position measurement using computer vision on humanoid soccer”, Computer Engineering and Informatics Department, Bandung State Polytechnic, Bandung, Indonesia, pp. 88 – 92, 2013.
[17] M. N. Sudin, M. F. Nasrudin and S. N. H. S. Abdullah, “Humanoid localisation in a robot soccer competition using a single camera”, IEEE International Colloquium on Signal Processing & its Applications, pp. 77 – 81, 2014.
[18] H. Minakata, Y. Hayashibara, K. Ichizawa, T. Horiuchi, M. Fukuta, S. Fujita, H. Kaminaga, K. Irie and H. Sakamoto, “A method of single camera Robocup humanoid robot localization using cooperation with walking control”, IEEE International Workshop on Advanced Motion Control, pp. 50 – 55, 2008.
[19] J. S. Chiang, C. H. Hsia, S. H. Chang, W. H. Chang, H. W. Hsu, Y. C. Tai, C. Y. Li and M. H. Ho, “An efficient object recognition and self-localization system for humanoid soccer robot”, SICE Annual Conference, pp. 2269 – 2278, 2010.
[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified, real-time object detection”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779 – 788, 2016.
[21] 沈予平,「基於擴展型卡爾曼濾波器之中型雙足人形機器人足球影像追蹤與定位」,碩士學位論文,國立臺灣科技大學,民國104年。[22] S. Torabian, S. H. Alipour, A. Mirzargar and M. Tavakkolian, “Improving the localization of humanoid soccer robots in specified fields: a neural network approach”, RSI/ISM International Conference on Robotics and Mechatronics, pp. 443 – 448, 2013.
[23] C. H. Kuo, H. C. Chou, S. W. Chi and Y. D. Lien, “Vision-based obstacle avoidance navigation with autonomous humanoid robots for structured competition problems”, International Journal of Humanoid Robotics, vol.10, no. 3, 2013.
[24] J. M. I. Zannatha, R. C. Lim´on, A. D. G. S´anchez, E. H. Castillo, L. E. F. Medina and F. J. K. L. Leyva, “Monocular visual self-localization for humanoid soccer robots”, Electrical Communications and Computers, pp. 100 – 107, 2011.
[25] W. Hong, C. Zhou and Y. Tian, “Robust Monte Carlo Localization for humanoid soccer robot”, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 934 – 939, 2009.
[26] B. Tian, C. L. Ng and C. M. Chew, “Self-localization of humanoid robots with fish-eye lens in a soccer field”, IEEE Conference on Robotics, Automation and Mechatronics, pp. 522 – 527, 2010.
[27] S. J. Miller, “The method of least squares”, Mathematics Department Brown University Providence, pp. 1 – 7, 2006.