|
1. H. Herzog, B. Eliasson, O. Kaarstad, Capturing greenhouse gases, Sci. Am. 282 (2000) 72-79. 2. 陳巾眉、蔡麗伶,「氣候變遷Q&A:溫室氣體會滯留在大氣中多久」,環境資源中心 (2012)。 3. U.S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014, Washington, U.S., 2006. 4. International Energy Agency, World Energy Investment Outlook | Special Report, Paris, France, 2014. 5. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, Advances in CO2 capture technology - The U.S. department of energy’s carbon sequestration program, Int. J. Greenh. Gas Con. 2 (2008) 9-20. 6. A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, P. K. Chatterjee, Present status and overview of chemical looping combustion technology, Renew. Sust. Energ. Rev. 59 (2016) 597-619. 7. National Energy Technology Laboratory, DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap, U.S., 2010. 8. H. Fang, L. Haibin, Z. Zengli, Advancements in development of chemical-looping combustion: a review, Int. J. Greenh. Gas Con. 2009 (2009) 1-16. 9. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2012) 215-282. 10. T. Mattisson, M. Johansson, A. Lyngfelt, Multicycle Reduction and oxidation of different types of iron oxide particles - application to chemical-looping combustion, Energy Fuels 18 (2004) 628-637. 11. Y.X. Zhang, E. Doroodchi, B. Moghtaderi, Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion, Energy Fuels 29 (2015) 337-345. 12. H.R. Paneth, The mechanism of self-diffusion in alkali metals, Phys. Rev. 80 (1950) 708-711. 13. H. Johansson, J. Byegård, G. Skarnemark, M. Skålberg, Matrix diffusion of some alkali- and alkaline earth- metals in granitic rock, Mater. Res. Soc. Symp. Proc. 465 (1997) 871-878. 14. F.J. Millero, Chemical oceanography, Fourth Edition, CRC press, London, New York, 2012. 15. Y.M. Su, Y. L. Kuo, C.M. Lin, S.F. Lee, One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet, Powder Tech. 267 (2014) 74-79. 16. W.C. Huang, Y.L. Kuo, Y.M. Su, Y.H. Tseng, H.Y. Lee, Y. Ku, A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process, Chem. Eng. J. 316 (2017) 15-23. 17. P.C. Chiu, Y. Ku, Chemical looping process - a novel technology for inherent CO2 capture, Aerosol Air Qual. Res. 12 (2012) 1421-1432. 18. H.J. Richter, K.F. Knoche, Reversibility of combustion process, efficiency and costing, ACS Symp. Ser. 235 (1983) 71-85. 19. M. Ishida, D. Zheng, T. Akehata, Evaluation of a Chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12 (1987) 147-154. 20. M. Ishida, M. Yamamoto, T. Ohba, Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃, Energy Convers. Manage. 43 (2002) 1469-1478. 21. P. Moldenhauer, M. Rydén, A. Lyngfelt, Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a circulating fluidized-bed 300W laboratory reactor, Fuel 93 (2012) 351-63. 22. K.S. Kang, C.H. Kim, K.K. Bae, W.C. Cho, S.H. Kim, C.S. Park, Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production, Int. J. Hydrogen Energy 35 (2010) 12246-12254. 23. B. Kronberger, G. Löffler, H. Hofbauer, Simulation of mass and energy balances of a chemical-looping combustion system, Int. J. Energy Clean Env. 6 (2005) 1-14. 24. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, Mapping of the range of operational conditions for Cu-, Fe- and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62 (2007) 533-549. 25. M.M. Hossain, H.I. de Lasa, Chemical-looping combustion (CLC) for inherent CO2 separations - a review, Chem. Eng. Sci. 63 (2008) 4433-4451. 26. D.R. Gaskell, Introduction to the thermodynamics of materials, Fourth Edition, Taylor & Francis, New York, 2003. 27. E. Jerndal, T. Mattisson, A. Lyngfelt, Thermal analysis of chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 795-806. 28. P. Fennell, B. Anthony, Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture, First Edition, Woodhead Publishing, Cambridge, UK, 2015. 29. M.R. Quddus, A novel mixed metallic oxygen carrier for chemical looping combustion preparation, characterization and kinetic modeling, Ph.D. Thesis, The University of Western Ontario, Canada, 2013. 30. M. Bartels, W. Lin, J. Nijenhuis, F. Kapteijn, J.R. van Ommen, Agglomeration in fluidized beds at high temperatures: mechanisms detection and prevention, Prog. Energy Combust. Sci. 34 (2008) 633-666. 31. J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad, Selection of oxygen carriers for chemical-looping combustion, Energy Fuels, 18 (2004) 371-377. 32. ASTM, D5757-95: Standard Test Method for Determination of Attrition and Abrasion of Powdered Catalysts by Air Jets, ASTM, Philadelphia, 1995. 33. A. Cabello, P. Gayán, F. García-Labiano, L.F. de Diego, A. Abad, J. Adánez, On the attrition evaluation of oxygen carriers in Chemical Looping Combustion, Fuel Process. Technol. 148 (2016) 188-197. 34. Mineral commodity summaries. U.S. Geological Survey, Reston, Virginia, 2016 35. M.K. Chandel, A. Hoteit, A. Delebarre, Experimental investigation of some metal oxides for chemical looping combustion in a fluidized bed reactor, Fuel 88 (5) (2009) 898-908. 36. M. Tang, L. Xu, M. Fan, Progress in oxygen carrier development of methane-based chemical-looping reforming: a review, Appl. Energy 151 (2015) 143-156. 37. O.J. Wimmers, P. Arnoldy, J.A. Moulijn, Determination of the reduction mechanism by temperature-programmed reduction: application to small Fe2O3 particles, J. Phys. Chem. 90 (1986) 1331-1337. 38. E.R. Monazam, R.W. Breault, R. Siriwardane, Kinetics of hematite to wüstite by hydrogen for chemical looping combustion, Energy Fuels 28 (8) (2014) 5406-5414. 39. H.Y. Lin, Y.W. Chen, C. Li, The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta 400 (2003) 61-67. 40. A. Pineau, N. Kanari, I. Gaballah, Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite, Thermochim. Acta 447 (2006) 89-100. 41. A. Pineau, N. Kanari, I. Gaballah, Kinetics of reduction of iron oxides by H2 Part II: Low temperature reduction of magnetite, Thermochim. Acta 456 (2007) 75-88. 42. F. Li, Chemical looping gasification process, Ph.D. Thesis, The Ohio State University, Columbus, Ohio, 2009. 43. J.I. Yang, Study on the application of metal-modified iron ore in a fluidized-bed reactor for chemical looping process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2014. 44. T. Song, L.H. Shen, J. Xiao, Z.P. Gao, H.M. Gu, S.W. Zhang, Characterization of hematite oxygen carrier in chemical-looping combustion at high reduction temperature, J. Fuel Chem. Technol. 39 (8) (2011) 567-574. 45. L.S. Fan, Chemical looping system for fossil energy conversion, A John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2010. 46. T. Song, J. Wu, H. Zhang, L. Shen, Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal, Int. J. Greenh. Gas Con. 11 (2012) 326-336. 47. I.J. Moon, C.H. Rhee, D.J. Min, Reduction of hematite compacts by H2-CO gas mixtures, Steel Res. 59 (8) (1998) 302-306. 48. N. Towhidi, J. Szekely, Reductions kinetic of commercial grade low silica hematite pellets with CO-H2 mixture over temperature range 600-1234°C, Ironmak. Steelmark. 6 (1981) 237-249. 49. E.R. Monazam, R.W. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J. 242 (2014) 204-210. 50. M.M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC), Chem. Eng. Res. Des. 88 (2010) 1505-1514. 51. Y.C. Liu, Application of the Fe2TiO5 as oxygen carriers for chemical looping process using the syngas as a fuel, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2011. 52. A. Abad, J. Adánez, A. Cuadrat, F. García-Labiano, P. Gayán, L. F. de Diego, Kinetics of redox reactions of ilmenite for chemical-looping combustion, Chem. Eng. Sci. 66 (2011) 689-702. 53. H. Leiona, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, The use of ilmenite as an oxygen carrier in chemical-looping combustion, Chem. Eng. Res. Des. 86 (2008) 1017-1026. 54. L.H. Shen, J.H. Wu, Z.P. Gao, J. Xiao, Experiments on chemical looping combustion of coal with a NiO based oxygen carrier, Combust. Flame 156 (3) (2009) 721-728. 55. L.H. Shen, J.H. Wu, Z.P. Gao, J. Xiao, Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in 10 kWth reactor, Combust. Flame 156 (7) (2009) 1377-1385. 56. K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut, M. Pohorˇelý, Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures, Energy Convers. Manage. 49 (2008) 221-231. 57. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, Use of coal as fuel for chemical-looping combustion with Ni-based oxygen carrier, Ind. Eng. Chem. Res. 47 (2008) 9279-9287. 58. S.Y. Chuang, J.S. Dennis, A.N. Hayhurst, S.A. Scott, Development and performance of Cu-based oxygen carriers for chemical-looping combustion, Combust. Flame 154 (1-2) (2008) 109-121. 59. E.M. Eyring, G. Konya, J.S. Lighty, A.H. Sahir, A.F. Sarofim, K. Whitty, Chemical looping combustion with copper oxide as carrier and coal as fuel, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 66 (2) (2011) 1-13. 60. T. Mattisson, A. Lyngfelt, H. Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenh. Gas Con. 3 (2009) 11-19. 61. P. Gayán, I. Adánez-Rubio, A. Abad, L. F. de Diego, F. García-Labiano, J. Adánez, Development of Cu-based oxygen carriers for chemical-looping with oxygen uncoupling (CLOU) process, Fuel 96 (2012) 226-238. 62. A. Abad, I. Adánez-Rubio, P. Gayán, F. García-Labiano, L. F. de Diego, J. Adánez, Demonstration of chemical-looping with oxygen uncoupling (CLOU) process in a 1.5 kWth continuously operating unit using a Cu-based oxygen-carrier, Int. J. Greenh. Gas Con. 6 (2012) 189-200. 63. E.R. Stobbe, B.A. de Boer, J.W. Geus, The reduction and oxidation behavior of manganese oxides, Catal. Today 47 (1999) 161-167. 64. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, Reduction and oxidation kinetics of Mn3O4/Mg-ZrO2 oxygen carrier particle for chemical looping combustion, Chem. Eng. Sci. 62 (2007) 655-666. 65. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, Chemical-looping with oxygen uncoupling using Mn/Mg-based oxygen carriers - Oxygen release and reactivity with methane, Fuel 90 (2011) 941-950. 66. W.M. Hsu, Materials characteristics of spinel nickel ferrite oxygen carrier and it’s selection of inert supports for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2012. 67. Y.H. Tseng, J.L. Ma, C.P. Chin, Y.L. Kuo, Y. Ku, Preparation of composite nickel - iron oxide as highly reactive oxygen carrier for chemical-looping combustion process, J. Taiwan Inst. Chem. Eng. 45 (2014) 174-179. 68. A. Steinfeld, Solar thermochemical production of hydrogen - a reviews, Solar Energy 78 (2005) 603-615 69. Y.L. Kuo, W.M. Hsu, P.C. Chiu, Y.H. Tseng, Y. Ku, Assessment of redox behavior of nickel ferrite as oxygen carriers for chemical looping process, Ceram. Int. 39 (2012) 5459-5465. 70. R. Siriwardane, H. Tian, T. Simonyi, J. Poston, Synergetic effects of mixed copper - iron oxides oxygen carriers in chemical looping combustion, Fuel 108 (2013) 319-333. 71. R. Siriwardane, H. Tian, J. Fisher, Production of pure hydrogen and synthesis gas with CueFe oxygen carriers using combined processes of chemical looping combustion and methane decomposition/reforming, Int. J. Hydrogen Energy 40 (2015) 1698-1708. 72. E.R. Monazam, R.W. Breault, H. Tian, R. Siriwardane, Reaction Kinetics of Mixed CuO−Fe2O3 with Methane as Oxygen Carriers for Chemical Looping Combustion, Ind. Eng. Chem. Res. 54 (2015) 11966-11974. 73. B. Wang, W. Wang, Q. Ma, J. Lu, H. Zhao, C. Zheng, In-depth investigation of chemical looping combustion of a Chinese bituminous coal with CuFe2O4 combined oxygen carrier, Energy Fuels 30 (2016) 2285-2294. 74. B. Wang, Y. Cao, J. Li, W. Wang, H. Zhao, C. Zheng, Migration and redistribution of sulfur species during chemical looping combustion of coal with CuFe2O4 combined oxygen carrier, Energy Fuels 30 (2016) 6499-8510. 75. S. Jiang, L. Shen, J. Wu, J. Yan, T. Song, The investigations of hematite-CuO oxygen carrier in chemical looping combustion, Chem. Eng. J. 317 (2017) 132-142. 76. S.T. Norberg, G. Azimi, S. Hull, H. Leion, In situ neutron powder diffraction study of the reaction M2O3 ↔ M3O4 ↔ MO, M = (Fe0.2Mn0.8): implications for chemical looping with oxygen uncoupling, CrystEngComm. 18 (2016) 5537-5546. 77. A. Lambert, C. Delquié, I. Clémençon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand, Synthesis and characterization of bimetallic Fe/Mn oxide for chemical looping combustion, Energy Procedia 1 (2009) 375-381. 78. G. Azimi, H. Leion, M. Rydén, T. Mattisson, A. Lyngfelt, Investigation of different Mn-Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU), Energy Fuels 27 (2013) 367-377. 79. M. Rydén, H. Leion, T. Mattisson, A. Lyngfelt, Combined oxides as oxygen-carrier material for chemical-looping with oxygen uncoupling, Appl. Energy 113 (2014) 1924-1932. 80. C. Linderholm, A. Lyngfelt, A. Cuadrat, E. Jerndal, Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite, Fuel 102 (2012) 808-822. 81. M. Arjmand, H. Leion, A. Lyngfelt, T. Mattisson, Use of manganese ore in chemical-looping combustion (CLC) - Effect on steam gasification, Int. J. Greenh. Gas Con. 8 (2012) 56-60. 82. M. Liang, W. Kang, K. Xie, Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique, J. Energy Chem. 18 (2009) 110-113. 83. W.C. Huang, Feasibility evaluation of electric arc furnace dust as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2013. 84. J.J. Lee, C.I. Lin, H.K. Chen, Carbothermal reduction of zinc ferrite, Metall. Mater. Trans. B 32 (2000) 1033-1040. 85. X. Wang, Z. Chen, M. Hu, Y. Tian, X. Jin, S. Ma, T. Xu, Z. Hu, S. Liu, D. Guo, B. Xiao, Chemical looping combustion of biomass using metal ferrites as oxygen carriers, Chem. Eng. J. 312 (2017) 252-262. 86. E. Manova, T. Tsoncheva, C. Estournès, D. Paneva, K. Tenchev, I. Mitov, L. Petrov, Nanosized iron and iron–cobalt spinel oxides as catalysts for methanol decomposition, Appl. Catal. A Gen. 300 (2006) 170-180. 87. J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, A. Abad, Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion, Ind. Eng. Chem. Res. 45 (2006) 2617-2625. 88. T. Mattisson, A. Järdnäs, A. Lyngfelt, Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion, Energy Fuels 17 (2003) 643-651. 89. Q. Zafar, T. Mattisson, B. Gevert, Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4, Energy Fuels 20 (2006) 34-44. 90. P.C. Chiu, Y. Ku, Y.L. Wu, H.C. Wu, Y.L. Kuo, Y.H. Tseng, Characterization and evaluation of prepared Fe2O3/Al2O3 oxygen carriers for chemical looping process, Aerosol Air Qual. Res. 14 (2014) 981-990. 91. B. Wang, H. Zhao, Y. Zheng, Z. Liu, R. Yan, C. Zheng, Chemical looping combustion of a Chinese anthracite with Fe2O3-based and CuO-based oxygen carriers, Fuel Process. Technol. 96 (2012) 104-115. 92. M. Johansson, T. Mattisson, A. Lyngfelt, Investigation of Fe2O3 with MgAl2O4 for chemical-looping combustion, Ind. Eng. Chem. Res. 43 (2004) 6978-6987. 93. J.A. Medrano, H.P. Hamers, G. Williams, M. van Sint Annaland, F. Gallucci, NiO/CaAl2O4 as active oxygen carrier for low temperature chemical looping applications, Appl. Energy 158 (2015) 86-96. 94. M. Arjmand, A.M. Azad, H. Leion, A. Lyngfelt, T. Mattisson, Prospects of Al2O3 and MgAl2O4-supported CuO oxygen carriers in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU), Energy Fuels 25 (2011) 5493-5502. 95. K.T. Jacob, C.B. Alcock, Thermodynamics of CuAlO2 and CuAl2O4 and phase equilibria in the system Cu2O-CuO-Al2O3, J. Am. Ceram. Soc. 58 (1975) 192-195. 96. M. Arjmand, M. Keller, H. Leion, T. Mattisson, A. Lyngfelt, Oxygen release and oxidation rates of MgAl2O4‑supported CuO oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU), Energy Fuels 26 (2012) 6528-6539. 97. Y.L. Kuo, W.C. Huang, W.M. Hsu, Y.H. Tseng, Y. Ku, Use of spinel nickel aluminium ferrite as self-supported oxygen carrier for chemical looping hydrogen generation process, Aerosol Air Qual. Res. 15 (2015) 2700-2708. 98. Q. Zafar, T. Mattisson, B. Gevert, Integrated hydrogen and power production with CO2 capture using chemical-looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as support, Ind. Eng. Chem. Res. 44 (2005) 3485-3496. 99. H. Song, K. Shah, E. Doroodchi, T. Wall, Be. Moghtader, Reactivity of Al2O3- or SiO2‑supported Cu‑, Mn‑, and Co-based oxygen carriers for chemical looping air separation, Energy Fuels 28 (2014) 1284-1294. 100. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Master. Sci. 46 (2011) 855-874. 101. Y. Ku, Y.C. Liu, P.C. Chiu, Y.L. Kuo, Y.H. Tseng, Mechanism of Fe2TiO5 as oxygen carrier for chemical looping process and evaluation for hydrogen generation, Ceram. Int. 40 (2014) 4599-4605. 102. B.S. Kwak, N.K. Park, S.O. Ryu, J.I. Baek, H.J. Ryu, M. Kang, Improved reversible redox cycles on MTiOx (M = Fe, Co, Ni, and Cu) particles afforded by rapid and stable oxygen carrier capacity for use in chemical looping combustion of methane, Chem. Eng. J. 309 (2017) 617-627. 103. J.R. Kelly, I Denry, Stabilized zirconia as a structural ceramic: An overview, Dent. Mater. 24 (2008) 289-298. 104. M. Johansson, T. Mattisson, A. Lyngfelt, Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 807-818. 105. U. F. Chinje, J.H.E. Jeffes, Effects of chemical composition of iron oxides on their rates of reduction: Part 1 Effect of trivalent metal oxides on reduction of hematite to lower iron oxides, Ironmak. Steelmak. 16 (1989) 90-95 106. R. Chaigneau, R.H. Heerema, The influence of specific impurities on the nucleation and growth of magnetite during reduction of artificially prepared hematite, Metall. Trans. B 22(1991) 503-511. 107. A.A. El-Geassy, Stepwise Reduction of CaO and/or to Magnetite Then Subsequently to MgO Doped-Fe2O3 compacts iron at 1173-1473K, ISIJ Int. 37 (1997) 844-853. 108. . K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power sources 122 (2003) 111-121. 109. L. Liu, M.R. Zachariah, Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion, Energy Fuels 27 (2013) 4977-4983. 110. K.J. Anusavice, Philip’s Science of dental marterials, Eleventh Edition, Saunder Elsevier, U.S., 2007. 111. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale kirkendall effect, Sci. 304 (2004) 711-714. 112. Z. Yu, C. Li, Y. Fang, J. Huang, Z. Wang, Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier, Energy Fuels 26 (2012) 2505-2511. 113. J. Bao, Z. Li, N. Cai, Promoting the reduction reactivity of ilmenite by introducing foreign ions in chemical looping combustion, Ind. Eng. Chem. Res. 52 (2013) 6119-6128. 114. J. Bao, Z. Li, N. Cai, Reduction kinetics of foreign-ion-promoted ilmenite using carbon monoxide (CO) for chemical looping combustion, Ind. Eng. Chem. Res. 52 (2013) 10646-10655. 115. M. Muhler, R. Schlogl, A. Reller, G. Ertl, The nature of the active phase of the Fe/K-catalyst for dehydrogenation of ethylbenzene, Catal. Lett. 2 (1989) 201-210. 116. H.J. Ge, L.H Shen, H.M Gu, T. Song, S.X. Jiang, Combustion performance and sodium transformation of high-sodium ZhunDong coal during chemical looping combustion with hematite as oxygen carrier, Fuel 159 (2015) 107-117. 117. J.S. Huang, Feasibility evaluation of Na-modified Fe2O3/Al2O3 as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2016. 118. H.M. Gu, L.H. Shen, J. Xiao, S.W. Zhang, T. Song, D.Q. Chen, Iron ore as oxygen carrier improved with potassium for chemical looping combustion of anthracite coal, Combust. Flame 159 (2012) 2480-2490. 119. D.D. Miller, R. Siriwardane, J. Poston, Fluidized-bed and fixed-bed reactor testing of methane chemical looping combustion with MgO-promoted hematite, Appl. Energy 146 (2015) 111-121. 120. J.C. Yu, Feasibility evaluation of Mg-modified Fe2O3/Al2O3 as oxygen carrier for chemical looping combustion process, M.S. Thesis, National Taiwan University of Science and Technology, Taiwan, 2015. 121. S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, Storage and supply of hydrogen by means of the redox of the iron oxides modified with Mo and Rh species, J. Catal. 228 (2004) 66-74. 122. J.C. Ryu, D.H. Lee, K.S. Kang, C.S. Park, J.W. Kim, Y.H. Kim, Effect of additives on redox behavior of iron oxide for chemical hydrogen storage, J. Ind. Eng. Chem. 14 (2008) 252-260. 123. K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, Chemical storage of hydrogen by modified iron oxides, J. Power sources 122 (2003) 111-121. 124. K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, M. Matsukata, Hydrogen production via steam–iron reaction using iron oxide modified with very small amounts of palladium and zirconia, Appl. Catal. A-Gen. 288 (2005) 143-148. 125. M. Shimokawabe, R. Furuichi, T. Ishii, Influence of the preparation history of α-Fe2O3 on its reactivity for hydrogen reduction, Thermochim. Acta 28 (1979) 287-305. 126. K. Otsuka, C. Yamada, T. Kaburagi, S. Takenaka, Hydrogen storage and production by redox of iron oxide for polymer electrolyte fuel cell vehicles, Int. J. Hydrogen Energy 28 (2003) 335-342. 127. L. Qin, Z. Cheng, M. Guo, M. Xu, J.A. Fan, L.S. Fan, Impact of 1% lanthanum dopant on carbonaceous fuel redox reactions with an iron-based oxygen carrier in chemical looping processes, ACS Energy Lett. 2 (2017) 70-74. 128. M. Tian, C. Wang, L. Li, X. Wang, High performance of La-promoted Fe2O3/α-Al2O3 oxygen carrier for chemical looping combustion, AIChE J. (2017). 129. V.V. Galvita, H. Poelman, V. Bliznuk, C. Detavernier, G.B. Marin, CeO2‑modified Fe2O3 for CO2 utilization via chemical looping, Ind. Eng. Chem. Res. 52 (2013) 8416-8426. 130. S. Sun, M. Zhao, L. Cai, S. Zhang, D. Zeng, R. Xiao, Performance of CeO2‑modified iron-based oxygen carrier in the chemical looping hydrogen generation process, Energy Fuels 29 (2015) 7612-7621. 131. C. Dueso, F. García-Labiano, J. Adánez, L. F. de Diego, P. Gayán, A. Abad, Syngas combustion in a chemical-looping combustion system using an impregnated Ni-based oxygen carrier, Fuel 88 (2009) 2357-2364. 132. A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, The use of iron oxide as oxygen carrier in a chemical-looping reactor, Fuel 86 (2007) 1021-1035. 133. Y. Cao, B. Lia, H.Y. Zhao, C.W. Lin, S.P. Sit, W.P. Pan, Investigation of asphalt (bitumen)-fuelled chemical looping combustion using durable copper-based oxygen carrier, Energy Procedia, 4 (2011), pp. 457-464. 134. P.C. Chiu, Performance evaluation of Fe2O3/Al2O3 oxygen carrier for chemical looping process by moving bed fuel reactor, Ph.D. Thesis, National Taiwan University of Science and Technology, Taiwan, 2014. 135. F. Li, L. Fan, Clean coal conversion processes-progress and challenges, Energy Env. Sci. 1 (2008) 248-267. 136. K.S. Go, S.R. Son, S.D. Kim, Reaction kinetics of reduction and oxidation of metal oxide for hydrogen production, Int. J. Hydrogen Energy 33 (2008) 5986-5995. 137. C.Y. Wen, Y.H. Yu, A generalized method for predicting the minimum fluidization velocity, AIChE J. 12 (1996) 610-612. 138. P. Gayán, A. Cabello, F. García-Labiano, A. Abad, L.F. de Diego, J. Adánez, Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support, Int. J. Greenh. Gas Con. 14 (2013) 209-219. 139. E. Mooasvi-Khoonsari, P. Hudon, I.H. Jung, Coupled experimental and thermodynamic optimization of the Na2O-FeO-Fe2O3-Al2O3 System: Part 1. Phase diagram experiments, J. Am. Ceram. Soc. 99 (2) (2016) 705-714. 140. R.J. Lang, Ultrasonic atomization of liquids, J. Acoust. Soc. Am. 34 (1) (1962) 6-8.
|