|
[1] K.-J. Cho, S.-I. Suk, S.-R. Park, J.-H. Kim, and J.-H. Jung, “Selection of proximal fusion level for adult degenerative lumbar scoliosis,” European Spine Journal, vol. 22, no. 2, pp. 394-401, 2013. [2] B. B. Carlson, D. C. Burton, and M. A. Asher, “Comparison of trunk and spine deformity in adolescent idiopathic scoliosis,” Scoliosis, vol. 8, no. 1, pp. 2, 2013. [3] S. Donzelli, S. Poma, L. Balzarini, A. Borboni, S. Respizzi, J. H. Villafane, F. Zaina, and S. Negrini, “State of the art of current 3-D scoliosis classifications: a systematic review from a clinical perspective,” Journal of Neuroengineering and Rehabilitation, vol. 12, no. 1, pp. 91, 2015. [4] C. Vergari, I. Courtois, E. Ebermeyer, H. Bouloussa, R. Vialle, and W. Skalli, “Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis,” European Spine Journal, vol. 25, no. 10, pp. 3049-3055, 2016. [5] N. Ramirez, P. Valentin, M. García-Cartagena, S. Samalot, and I. Iriarte, “One-step (standard) versus two-step surgical approach in adolescent idiopathic scoliosis posterior spinal fusion: Which is better?,” European Journal of Orthopaedic Surgery & Traumatology, vol. 26, no. 5, pp. 441-446, 2016. [6] O. H. Mayer, “Scoliosis and the impact in neuromuscular disease,” Paediatric Respiratory Reviews, vol. 16, no. 1, pp. 35-42, 2015. [7] C. Li, M. Yang, C. Wang, C. Wang, J. Fan, Z. Chen, X. Wei, G. Zhang, Y. Bai, and X. Zhu, “Preoperative factors predicting intraoperative blood loss in female patients with adolescent idiopathic scoliosis,” Medicine, vol. 94, no. 1, pp. 1-5, 2015. [8] P. Hadagali, “Subject-specific finite element modeling of the adolescent thoracic spine for scoliosis research,” Drexel University, 2014. [9] K. HAJIZADEH, “Developing a 3D multi-body simulation tool to study dynamic behaviour of human scoliosis,” 2013. [10] S. C. Mordecai, and H. V. Dabke, “Efficacy of exercise therapy for the treatment of adolescent idiopathic scoliosis: a review of the literature,” European Spine Journal, vol. 21, no. 3, pp. 382-389, 2012. [11] Z. Zhu, L. Xu, X. Sun, J. Qiao, B. Qian, S. Mao, and Y. Qiu, “Is brace treatment appropriate for adolescent idiopathic scoliosis patients refusing surgery with cobb angle between 40 and 50 degrees,” Clinical Spine Surgery, pp. 85-89, 2016. [12] D. Périé, C. Aubin, Y. Petit, H. Labelle, and J. Dansereau, “Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis,” Clinical Biomechanics, vol. 19, no. 2, pp. 190-195, 2004. [13] M. Driscoll, J.-M. Mac-Thiong, H. Labelle, S. Stad, H. Serhan, and S. Parent, “Biomechanical comparison of 2 different pedicle screw systems during the surgical correction of adult spinal deformities,” Spine Deformity, vol. 3, no. 2, pp. 114-121, 2015. [14] P. C. Celestre, L. Y. Carreon, L. G. Lenke, D. J. Sucato, and S. D. Glassman, “Sagittal alignment two years after selective and nonselective thoracic fusion for Lenke 1C adolescent idiopathic scoliosis,” Spine Deformity, vol. 3, no. 6, pp. 560-565, 2015. [15] M. Driscoll, C.-E. Aubin, A. Moreau, and S. Parent, “Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis,” Medical & Biological Engineering & Computing, vol. 49, no. 12, pp. 1437-1445, 2011. [16] P. Trobisch, O. Suess, and F. Schwab, “Idiopathic scoliosis,” Dtsch Arztebl Int, vol. 107, no. 49, pp. 875-883, 2010. [17] N. Cobetto, C. Aubin, S. Parent, J. Clin, S. Barchi, I. Turgeon, and H. Labelle, “Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial,” European Spine Journal, vol. 25, no. 10, pp. 3056-3064, 2016. [18] F. Desbiens-Blais, J. Clin, S. Parent, H. Labelle, and C.-E. Aubin, “New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis,” Clinical Biomechanics, vol. 27, no. 10, pp. 999-1005, 2012. [19] A. Sattout, J. Clin, N. Cobetto, H. Labelle, and C.-E. Aubin, “Biomechanical assessment of providence nighttime brace for the treatment of adolescent idiopathic scoliosis,” Spine Deformity, vol. 4, no. 4, pp. 253-260, 2016. [20] E. H. Lou, A. C. Chan, A. Donauer, M. Tilburn, and D. L. Hill, “Ultrasound-assisted brace casting for adolescent idiopathic scoliosis, IRSSD best research paper 2014,” Scoliosis, vol. 10, no. 1, pp. 13, 2015. [21] G. T. Wynarsky, and A. B. Schultz, “Optimization of skeletal configuration: studies of scoliosis correction biomechanics,” Journal of Biomechanics, vol. 24, no. 8, pp. 721-732, 1991. [22] D. Gignac, C.-É. Aubin, J. Dansereau, and H. Labelle, “Optimization method for 3D bracing correction of scoliosis using a finite element model,” European Spine Journal, vol. 9, no. 3, pp. 185-190, 2000. [23] W. Nie, G. Fang, and Y. Yan, “Design of individual brace for the 3-D correction and mechanics study,” pp. 1362-1365, 2015. [24] S. Pasha, C.-E. Aubin, H. Labelle, S. Parent, and J.-M. Mac-Thiong, “The biomechanical effects of spinal fusion on the sacral loading in adolescent idiopathic scoliosis,” Clinical Biomechanics, vol. 30, no. 9, pp. 981-987, 2015. [25] F.-H. Cheng, S.-L. Shih, W.-K. Chou, C.-L. Liu, W.-H. Sung, and C.-S. Chen, “Finite element analysis of the scoliotic spine under different loading conditions,” Bio-medical Materials and Engineering, vol. 20, no. 5, pp. 251-259, 2010. [26] D. Perie, C. Aubin, M. Lacroix, Y. Lafon, and H. Labelle, “Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface,” pp. 339-344, 2004. [27] N. Lalonde, I. Villemure, R. Pannetier, S. Parent, and C.-É. Aubin, “Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery,” Clinical Biomechanics, vol. 25, no. 6, pp. 510-516, 2010. [28] W. Wang, G. R. Baran, R. R. Betz, A. F. Samdani, J. M. Pahys, and P. J. Cahill, “The use of finite element models to assist understanding and treatment for scoliosis: a review paper,” Spine Deformity, vol. 2, no. 1, pp. 10-27, 2014. [29] G. Wood, “Brace modifications that can result in improved curve correction in idiopathic scoliosis,” Scoliosis, vol. 9, no. 1, pp. 2, 2014. [30] C. Vergari, G. Ribes, B. Aubert, C. Adam, L. Miladi, B. Ilharreborde, K. Abelin-Genevois, P. Rouch, and W. Skalli, “Evaluation of a patient-specific finite-element model to simulate conservative treatment in adolescent idiopathic scoliosis,” Spine Deformity, vol. 3, no. 1, pp. 4-11, 2015. [31] M. Yagi, N. Hosogane, K. Watanabe, T. Asazuma, M. Matsumoto, and K. S. R. Group, “The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis,” The Spine Journal, vol. 16, no. 4, pp. 451-458, 2016. [32] D. Ignasiak, S. Dendorfer, and S. J. Ferguson, “Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading,” Journal of Biomechanics, vol. 49, no. 6, pp. 959-966, 2016. [33] A. Awoukeng Goumtcha, M. Bodo, L. Taddei, and S. Roth, “From military to civil loadings: Preliminary numerical‐based thorax injury criteria investigations,” International Journal for Numerical Methods In Biomedical Engineering, 2015. [34] S. Langensiepen, O. Semler, R. Sobottke, O. Fricke, J. Franklin, E. Schönau, and P. Eysel, “Measuring procedures to determine the cobb angle in idiopathic scoliosis: a systematic review,” European Spine Journal, vol. 22, no. 11, pp. 2360-2371, 2013. [35] X.-s. Qiu, W.-w. Ma, W.-g. Li, B. Wang, Y. Yu, Z.-z. Zhu, B.-p. Qian, F. Zhu, X. Sun, and B. K. Ng, “Discrepancy between radiographic shoulder balance and cosmetic shoulder balance in adolescent idiopathic scoliosis patients with double thoracic curve,” European Spine Journal, vol. 18, no. 1, pp. 45-51, 2009. [36] F. Balagué, and F. Pellisé, “Adolescent idiopathic scoliosis and back pain,” Scoliosis and Spinal Disorders, vol. 11, no. 1, pp. 27, 2016.
|