跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:TRAN MINH QUANG
研究生(外文):TRAN MINH QUANG
論文名稱:以切削力訊號分析銑削加工穩定性
論文名稱(外文):Analysis of Milling Stability Based on Cutting Force Signal Processing
指導教授:鍾俊輝劉孟昆
指導教授(外文):Chun-Hui ChungMeng-Kun Liu
口試委員:劉孟昆Chun-Liang Kuo
口試委員(外文):Meng-Kun LiuChun-Liang Kuo
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:78
中文關鍵詞:銑削加工刀具顫震時頻分析小波分析希爾伯特-黃轉換
外文關鍵詞:Milling processChatter detectionTime-frequency analysisWavelet transformHilbert Huang transform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:374
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:2
銑削加工是一種非常常見的成型加工方法,而在銑削加工的過程中,不適當的加工參數會使刀具產生顫震,其顫震原因來自於刀刃與工件之間呈現週期性的不連續切削行為,造成切屑厚度週期性的變化,使得刀具產生自激性的震動以及不穩定的切削行為,而顫震會使銑削加工的不穩定性以及降低切削效率,造成尺寸精度、刀具壽命以及表面完整性的下降,因此本研究主要目標為建立完整之刀具壽命下,開發端銑刀的動態切削力模組,對於銑削加工潛在的顫震進行探討。以模組的方式模擬出之切削立,與實際切削所獲得之切削力進行時間及頻率域比較,我們發現時域、頻率域、短時距傅立葉變換、連率小波轉換以及希爾伯特-黃轉換進行顫震訊號分析,相較於使用傅立葉變換光譜法所獲得之結果是徹底地不同,傅立葉變換光譜法在應用於大量的非線性訊號效率極低,進行動態切削力模組模擬之訊號與實驗所獲得之切削力訊號比較,發現顫震頻率主要由兩個現象之頻率所構成,為刀刃通過工件時之頻率以及顫震造成的不穩定高頻,此外,以standard deviation以及本質模態函數方式所獲得之能量比,可有效率的辦別出刀具顫震,最後通過工件表面形貌、表面粗糙度和穩定性波瓣圖驗證其分析結果
The milling operation is the most common form of machining. Because the action of each cutting edge and workpiece is intermittent and periodical, the chip thickness varies periodically. This could lead to self-excited vibrations and unstable cutting which is called chatter vibration. Chatter causes machining instability and reduces productivity in the metal cutting process. It has negative effects on the surface finish, dimensional accuracy, tool life and machine life. Chatter identification is therefore necessary to control, prevent, or eliminate chatter and to identify the stable machining condition. A dynamic cutting force model of the end-milling process with tool runout error was established in this research to understand the underlying mechanism of chatter. The accuracy of the cutting force model in both time and frequency domains was evaluated by comparing to experimental force signals. Time-frequency analysis approaches, specifically short time Fourier transform, continuous wavelet transform and Hilbert-Huang transform, were utilized to give an utterly different perspective of chatter from the conventional Fourier spectrum which is insufficient in analyzing the signals of rich nonlinear characteristics. By comparing the simulation with experimental result, chatter frequency was found to consist of two major components, frequency modulation alongside tooth passing frequency caused by the increased tool runout error and the non-stationary high frequency from the regenerative vibration. Moreover, dimensionless chatter indicators, defined by the standard deviation and energy ratio of the specific intrinsic mode function, could identify the occurrence of chatter effectively. The analysis result was then validated by the workpiece surface topography, surface roughness and the stability lobe diagram
摘要 i
Abstract ii
Acknowledgement iii
Nomenclature iv
Contents v
Chapter 1 1
Introduction 1
1.1. Background 1
1.2. Objective and Scope 2
1.3. Outlines and Contribution of the Chapters 3
Chapter 2 4
Literature Review 4
2.1. Chatter Vibrations in Milling 4
2.2. Signal Analysis Approaches 6
Chapter 3 10
Dynamic Cutting Force Model 10
3.1. Regenerative Chatter Model 10
3.2. Dynamic Cutting Force Model 15
Chapter 4 17
Experimental Setup and Model Verification 17
4.1. Overview and Aim 17
4.2. Experimental Setup 17
4.2.1. Machine, Cutter and Workpiece 17
4.2.2. Cutting Force Measurement Equipment 19
4.2.3. Surface Topography Measurement Equipment 20
4.2.4. Surface Roughness Measurement Equipment 20
4.3. Cutting Force Coefficients 21
4. 4. Experimental Design Parameters 25
4.5. Tool Tip Dynamics 27
4.5.1. Impact Testing 27
4.5.2. Modal Analysis 27
4.5.3. Stability Lobe Diagram 31
4.6. Simulation and Experimental Results 33
Chapter 5 36
Chatter Detection Methodology 36
5.1 Short-Time Fourier Transform Analysis 36
5.2. Continuous Wavelet Transform Analysis 38
5.3. Time-Frequency Analysis Based on HHT 41
5.3.1. Chatter Detection Methodology 41
5.3.2. Results and Discussions 44
5.3.3. Dimensionless Indexes for Chatter Identification 50
5.3.4. Method Verification 51
5.4. Chatter Identification of Small Size End Mill 54
5.4.1. Overview and Aim 54
5.4.2 Experimental Setup 54
5.4.3. Chatter Identification by Time-Frequency Analysis 57
Chapter 6 60
Conclusions and Future Works 60
6.1. Conclusions 60
6.2. Future Works 60
Bibliography 61
[1]. D. A. Stephenson, J. S. Agapiou, 2006. Metal cutting Theory and Practice, CRC Press Taylor & Francis Group.
[2]. Schmitz, L., Smith, S., 2008. Machining Dynamics: Frequency Response to Improved Productivity. Springer Science & Business Media.
[3] Altintas, Yusuf, 2012. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge university press.
[4]. Lacerda, H., Lima, V., 2004. “Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling”, Journal of the Brazilian Society of Mechanical Sciences and Engineering 26 (1), pp. 74-81.
[5]. Abele, E., Fiedler, U., 2004. “Creating Stability Lobe Diagrams during Milling”, CIRP Annals - Manufacturing Technology 53, pp. 309-312.
[6]. Wei, C., Liu, K., Huang, H., 2016. “Chatter Identification of Face Milling Operation via Time-Frequency and Fourier Analysis”, International Journal of Automation and Smart Technology 6 (1), pp. 25-36.
[7]. Feng, J., Sun, Z., Jiang, Z., Yang, L., 2015. “Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography”, International Journal of Advanced Manufacturing Technology 82, pp. 1909-1920.
[8]. Kundan Singh, Ramesh Singh, Kartik, V., 2015. “Comparative Study of Chatter Detection Methods for High-Speed Micromilling of Ti6Al4V”, Procedia Manufacturing 1, pp. 593–606.
[9]. Zhu, K., Wong, S., Hong S., 2009. “Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results”, International Journal of Machine Tools & Manufacture 49, pp. 537–553.
[10]. Huang, N., et al., 1998. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 454, pp. 903-995.
[11]. Martellotti M. E., 1941. “An Analysis of the Milling Process”, Transactions of the ASME 63, pp. 677-700.
[12]. Kline, A., Devor, E., Lindberg R., 1982. “The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts”, International Journal of Machine Tool Design and Research, 22 (1), pp. 7-22.
[13]. Tsai, C., 2007. “Analysis and prediction of cutting forces in end milling by means of a geometrical model”, International Journal of Advanced Manufacturing Technology 31, pp. 888–896.
[14]. Altintas, Y., Engin, S., 2001. “Generalized Modeling of Mechanics and Dynamics of Milling Cutters”, CIRP Annals - Manufacturing Technology 50 (1), pp. 25-30.
[15]. Kline, W., Devor, R., 1983. “The effect of runout on cutting geometry and forces in end milling”, International Journal of Machine Tool Design and Research 23 (2/3). pp. 123-140.
[16]. Cifuentesa, E., Garcíab, H., Villaseñora, M., Idoipec, A., 2010. “Dynamic analysis of runout correction in milling”, International Journal of Machine Tools and Manufacture 50 (8). pp. 709–717.
[17]. Tobias, A., Fishwick, W., 1958. “Theory of regenerative machine tool chatter”, The Engineer 205 (7), pp. 199-203.
[18]. Altintas, Y., Budak, E., 1995. “Analytical prediction of stability lobes in milling”, CIRP Annals - Manufacturing Technology 44 (1). pp. 357-362.
[19]. Tlusty, J., Polacek, M., 1963. “The stability of machine tools against self-excited vibrations in machining”, Proceedings of the International Research in Production Engineering Conference, Pittsburgh, PA, ASME, New York, pp. 454-465.
[20]. Dimla, D., Lister, P., 2000. “On-line metal cutting tool condition monitoring: force and vibration analyses”, International Journal of Machine Tools & Manufacture 40, pp. 739–768.
[21]. Oppenheim, V., Willsky, S., Nawab, N., Nawab, H., 1996. Signals and Systems. 2nd edn. Prentice-Hall, Englewood Cliffs, NJ.
[22]. Elbestawi, A., Papazafiriou, A., Du, X., 1991. “In-process monitoring of tool wear in milling using cutting force signature”, International Journal of Machine Tools and Manufacture 31, pp. 55-73.
[23]. Huang, P., Li, J., Sun, J., Zhou, J., 2013. “Vibration analysis in milling titanium alloy based on signal processing of cutting force”, International Journal of Advanced Manufacturing Technology 64, pp. 613-621.
[24]. Litak, G., Kecik, K., Rusinek, R., 2013. “Cutting force response in milling of Inconel: Analysis by wavelet and Hilbert-Huang Transforms”, Latin American Journal of Solids and Structures 10(1), pp. 133-140.
[25]. Berger, S., Harlay, J., Rokni, M., Papadopoulos, M., 1988. “Wavelet based cutting state identification”, Journal of Sound and Vibration 213(5), pp. 813–827.
[26]. Kunpeng, Z., San, Y., Soon, G., 2009. “Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results”, International Journal of Machine Tools and Manufacture 49, pp. 537-553.
[27]. Khraisheh, K., Pezeshki, C., Bayoumi, E., 1995. “Time series based analysis for primary chatter in metal cutting”, Journal of Sound and Vibration 180(1), pp. 67-87.
[28]. Tangjitsitcharoen, S., Saksri, T., Ratanakuakangwan, S., 2015. “Advance in chatter detection in ball end milling process by utilizing wavelet transform”, Journal of Intelligent Manufacturing 26, pp. 485-499.
[29]. Peng, C., Wang, L., Liao, W., 2015. “A new method for the prediction of chatter stability lobes based on dynamic cutting force simulation model and support vector machine”, Journal of Sound and Vibration 354, pp. 118-131.
[30]. Yoon, C., Chin, H., 2005. “Cutting force monitoring in the end milling operation for chatter detection”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 219 (6), pp. 455-465.
[31]. Yan, R., Gao, X., 2006. “Hilbert–Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring”, IEEE Transactions on Instrumentation and Measurement, 55 (6), pp. 2320-2329.
[32]. Huang, N., Samuel, S., 2005. Hilbert-Huang transform and its applications, Vol. 5. World Scientific, Hackensack, NJ.
[33]. Peng, W., Hu, Z., Yuan, L., Zhu, P., 2013. “Chatter identification using HHT for boring process”, Proceedings of SPIE - The International Society for Optical Engineering.
[34]. Cao, H., Lei, Y., He, Z., 2013. “Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform”, International Journal of Machine Tools and Manufacture 69, pp. 11-19.
[35]. Cao, H., Zhou, K., Chen, X., 2015. “Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators”, International Journal of Machine Tools and Manufacture 92, pp. 52-59.
[36]. Qui, Y. W., 2016. “On the Study of Milling Chatter”, Master’s Thesis, National Taiwan.
[37]. Liu, M., K., Tran, Q., M., Qui, Y. W., Chung, C., H., 2017. “Chatter Detection in Milling Process Based on Time-Frequency Analysis”, Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference, CA, US.
[38]. Michel Misiti Yves Misiti Georges Oppenheim Jean-Michel Poggi, 2002. Wavelet Toolbox
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊