參考文獻
【1】 蔡宏營,“奈米轉印技術介紹”,工研院機械所 中華民國力學學會會訊,104期(2003)。
【2】 J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
【3】 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092 (1953).
【4】 L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
【5】 B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
【6】 D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
【7】 M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications”, Kluwer Academic Publishers, USA, (1991).
【8】 U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science, New Series, Vol. 248, No. 4954, pp. 454-461(1990).
【9】 K. Komvopoulos, and W. Yan, “Molecular dynamics simulation of single and repeated indentation”, J. Appl. Phys. Vol. 82, 4823 (1997).
【10】 W. Yan, and K. Komvopoulos, “Three-dimensional molecular dynamics analysis of atomic-scale indentation”, Transaction of the ASME J. TRIBOL. Vol. 120, 358(1998).
【11】 P. Walsh, R. K. Kalia, A. Nakano, and P.Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study”, Appl. Phys. Lett. Vol. 77, 4332(2000).
【12】 P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P.Vashishta, “Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study”, Appl. Phys. Lett. Vol. 82, 118(2003).
【13】 D. Christopher, R. Smith and A. Richer, “Atomistic modeling of nanoindentation in iron and silver”, Institute of Physics Publishing, Nanotechnology, Vol. 12, pp. 372-383(2001).
【14】 Hualiang Yu, James B Adams and Louis G Hector Jr, “ Molecular Dynamics Simulation of High-Speed Nanoindentation”, Modelling Simul. Master.Sci. Eng. 10,319-329 (2002).
【15】 Q. C. Hsu, C. D. Wu, T. H. Fang, “Studies on nanoimprint process parameters of copper by molecular dynamics analysis”, Computational Materials Science, Vol. 34, pp. 314-322(2005).
【16】 Q. C. Hsu, C. D. Wu and T. H. Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics”, Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp. 7665–7669(2004).
【17】 T. H. Fang, C. D. Wu and W. J. Chang, “Molecular dynamics analysis of nanoimprinted Cu–Ni alloys”, Applied Surface Science, Vol. 253, pp. 6963–6968(2007).
【18】 C. W. Hsieh and C. K. Sung, “Atomic-Scale Friction in Direct Imprinting Process: Molecular Dynamics Simulation”, Japanese Journal of Applied Physics, Vol. 46, No. 9B, pp. 6387–6390(2007).
【19】 Y. Yuan, T. Sun, J. Zhang and Y. Yan, “Molecular dynamics study of void effect on nanoimprint of single crystal aluminum,” Applied Surface Science, Vol. 257, pp. 7140–7144(2011).
【20】 G. B. Sushko, A. V. Verkhovtsev, and A. V. Solov’yov, “Validation of Classical Force Fields for the Description of Thermo-Mechanical Properties of Transition Metal Materials,” The Journal of Physical Chemistry, Vol. 118, pp.8426-8436(2014).
【21】 C. H. Wang, K. C. Chao, T. H. Fang, I. Stachiv and S. F. Hsieh, “Investigations of the mechanical properties of nanoimprinted amorphous Ni-Zr alloys utilizing the molecular dynamics simulation,” Journal of Alloys and Compounds, Vol. 659, pp.224-231(2016).
【22】 M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
【23】 J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London, Series A, Vol. 106, No. 738,pp. 441-462 (1924).
【24】 J. E. Lennard-Jones, “On the Determination of Molecular Fields.-II.From the Equation of State of a Gas”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 106, No. 738,pp. 463-477 (1924).
【25】 P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review, Vol. 34,pp. 57-64 (1929).
【26】 L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3,pp. 687-690 (1959).
【27】 M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No. 17, pp. 1285-1288 (1983).
【28】 M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals”, Phys. Rev. B, Vol. 29, No. 12, pp. 6443-6453 (1984).
【29】 V. Rosato, M. Guillope and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophic Magazin A, Vol. 59, No. 2, pp. 321-336(1989).
【30】 F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).
【31】 C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ, (1971).
【32】 J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication)”, John Wiley & Sons, Inc, USA, (1992).
【33】 J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol. 59, pp. 309-314 (1996).
【34】 C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical. Review B, Vol. 58, No. 17, pp. 11085-11088 (1998).
【35】 彭達仁, “分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析”,國立台灣科技大學博士論文(2008)。【36】 廖凱民, “分子動力學模擬不同冷卻速率之Au50Ag50合金的結晶行為與切削性”, 國立台灣科技大學碩士論文(2013)。【37】 J. D. Honeycutt and H. C. Andersen, “Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters”, J. Phys. Chem.91, pp. 4950-4963 (1987).
【38】 A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool”, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
【39】 R. A. Johnson, “Alloy Models with The Embedded-Atom Method”, Physical Review B, Vol. 39, No. 17, pp. 12554-12559 (1989).
【40】 R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals”, Physical Review B, Vol. 37, No. 8, pp. 3924-3931 (1988).
【41】 G. Mazzone and V. Rosato, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys”, Physical Review B, Vol. 55, No. 2, pp.837-842(1997).
【42】 凃怡果, “分子動力學模擬單晶銅材的奈米壓印”, 國立台灣科技大學碩士論文(2010)。【43】 機械工業雜誌,轉印模仁之奈米結構製作,269期,pp. 44-55(2005)。
【44】 S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Physical Review B, Vol.33, No.12, pp.7983-7991 (1986).
【45】 R. Dingreville, “Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: from an atomistic description to a continuum approach”, Georgia Institute of Technology, (2007).