1. C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things" , MRS Bull, Vol.28, pp.486-491(2003).
2. D. Huo, Y. Liang and K. Cheng, "An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation" , Journal of Mechanical Engineering Science, Vol. 221, pp. 259-266 (2007) .
3. L. N. Mastorakos, H. M. Zbib, D. F. Bahr, J. Parsons and M. Faisal,"Pseudoelastic Behavior of Cu-Ni Composite Nanowires", Applied Physics Letters, 94, 043104(2009).
4. H. Rafii-Tabar, "Modelling The Nano-Scale Phenomena in Condensed Matter Physics Via Computer-Based Numerical Simulations", Physics Reports, Vol.325, pp.239-310(2000).
5. Y. Kondo and K. Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science, Vol.289, pp.606-608(2000).
6. V. Rodrigues, T. Fuhrer and D. Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires", Physical Review Letters, Vol.85, No.19, pp.4124-4127(2000).
7. Z. Pan, Y. Li and Q. Wei, "Tensile Properties of Nanocrystalline Tantalum from Molecular Dynamics Simulations", Acta Materialia, Vol.56, pp.3470-3480(2008).
8. L. Yuan, D. Shan and B. Guo, "Molecular Dynamics Simulations of Tensile Deformation of Nano-Single Crystal Aluminum", Journal of Materials Processing Technology, Vol.184, pp.1-5(2007).
9. J. Dian, K. Gall, M. L. Dunn and J. A. Zimmerman, "Atomistic Simulations of The Yielding of Gold Nanowires", Acta Materialia, Vol.54, pp.643-653(2006).
10. Y. H. Wen, Z. Z. Zhu and R. Z. Zhu, "Molecular Dynamics Study of The Mechanical Behavior of Nickel Nanowire: Strain Rate Effects", Computational Materials Science, Vol.41, pp.553-560(2008).
11. Z. C. Lin and J. C. Hung, "A Study On A Rigid Body Boundary Layer Interface Force Model For Stress Calculation and Stress-Strain Behaviour of Nanoscale Uniaxial Tension", Nanotechnology, Vol.15, pp.1509-1518(2004).
12. Y. H. Lin, S. R. Jian and Y. S. Lai, "Molecular Dynamics Simulation of Nanoindentation-Induced Mechanical Deformation and Phase Transformation", Nano Express, Vol.3, pp.71-75(2008).
13. Y. X. Shen, H. R. Gong, L. T. Kong and B. X. Liu, "Structural Phase Transitions in The Cu-Based Cu-V Solid Solutions Studied By Molecular Dynamics Simulation", Journal of Alloys And Compounds, Vol.366, pp.205-212(2004).
14. J. Wang, W. Hu, X. Li, S. Xiao and H. Deng, "Strain-Driven Phase Transition of Molybdenum Nanowire Under Uniaxial Tensile Strain", Computational Materials Science, Vol.50, pp.373-377(2010).
15. 黃再利., "分子動力學模擬奈米銅線結晶型態及機械行為研究",國立台灣科技大學碩士論文, (2009).16. T. H. Fang, C. I. Weng and J. G. Chang, "Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement", Materials Science Engineering, Vol.357, pp.7-12(2003).
17. G. Chevrot, E. Bourasseau, N. Pineau and J. B. Maillet, "Molecular Dynamics Simulations of Nanocarbons at High Pressure and Temperature", Carbon, Vol.47, pp.3392-3402(2009).
18. A. BrÓdka, J. Kołoczek, A. Burian, J. C. Dore, A. C. Hannon and A. Fonseca, "Molecular Dynamics Simulation of Carbon Nanotube Structure", Journal of Molecular Structure, Vol.792-793, pp.78-81(2006).
19. J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
20. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
21. L. Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
22. B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
23. D. C. Rapaport, "Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers", Computer Physics Reports, 2001, Vol.9, pp.1-53(1988).
24. M. Meyer and V. Pontikis, "Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications", Kluwer Academic Publishers, USA, (1991).
25. S. L. Frederiksen, K. W. Jacobsen and J. Schiotz, "Simulations of Intergranular Fracture in Nanocrystalline Molybdenum", Acta Materialia, Vol.52, pp.5019-5029(2004).
26. V. V. Stegaĭlov ans A. V. Yanilkin, "Structural Transformations in Single-Crystal Iron during Shock-Wave Compression and Tension: Molecular Dynamics Simulation", Journal of Experimental and Theoretical Physics, Vol.104, No.6, pp.928-935(2007).
27. G. Sainath, B. K. Choudhary, "Orientation dependent deformation behaviour of BCC iron nanowires", Computational Materials Science, Vol.111, pp.406–415(2016)
28. J. H. Shim, H. J. Lee Voigt, B. D. Wirth, "Temperature dependent dislocation bypass mechanism for coherent precipitates in Cu-Co alloys", Acta Materialia, Vol.110, pp.276-282(2016)
29. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
30. J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
31. P. M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
32. M. S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
33. M. S. Daw, "Model of Metallic Cohesion: The Embedded-Atom Method", Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
34. R. A. Johnson, "Analytic Nearest-Neighbor Model for FCC Metals", Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
35. R. A. Johnson, "Alloy Models with The Embedded-Atom Method", Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
36. R. A. Johnson and D.J. Oh, "Analytic embedded atom method model for bcc metals",
37. F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, Volume 48, Number 1 July 1993.
38. Y. Mishin and D. Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations", Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
39. C. W. Gear, "Numerical Initial Value Problems in Ordinary Differential Equations", Prentice-Hall, Englewood Cliffs, NJ, (1971).
40. J. M. Haile, "Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication) ", John Wiley and Sons, Inc, USA, (1992).
41. R. Calusius, "On a Mechanical Theory Applicable to Heat", Philosophical Magazine, Vol.40, pp.122-127(1870).
42. Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
43. D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model", Philosophical Magazine A, Vol.44, pp.847-866(1981).
44. N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
45. Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method", Molecular Simulation, Vol.33, pp. 979-988(2007).
46. T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)" , JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
47. C.L.Kelchner, S.J.Plimpton and J.C.Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
48. 彭達仁,"分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析",國立台灣科技大學博士論文,(2008)。49. A. M. Guellil and J. B. Adams, "The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys", Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
50. Z. Bangwei and O. Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
51. I. H. Dursun, Z. B. Güvenç and E. Kasap, "A Simple Analytical EAM Model for Some BCC Metals", Commun Nonlinear Sci Numer Simulat, Vol.15, pp.1259-1266(2010).
52. M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals", Philosophical Magazine A, Vol.50, pp.45-55(1984).
53. R. A. Johnson and D. J. Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM, (1988).
54. J. P. Hirth and J. Lothe, Theory of Dislocation(2nd ed.), Wiley, New York, pp.835-839(1982).
55. H. Liu and J. Zhou, "Atomic-scale analysis of deformation mechanisms of nanotwinned polycrystalline Ni nanowires during tension", Computational Materials Science, Vol.113, pp.27–37(2016).
56. R.A. Kellogg, A.M. Russell, T.A. Lograsso, A.B. Flatau, A.E. Clark and M. Wun-Fogle, "Mechanical properties of magnetostrictive iron-gallium alloys." (2003).
57. A. Cao, "Shape memory effects and pseudoelasticity in bcc metallic nanowires." Journal of Applied Physics 108.11 (2010): 113531.