1.M. Niinomi: Metall Mater. Trans. A. 33 (2002) 477-486.
2.Y. L. Zhou and D. M. Luo, J. Alloys Compd. 509 (2011) 6267-6272.
3.T. Duerig, A. Pelton and D. Stockel: Mater. Sci. Eng. A. 273-275 (1999)149-160.
4.P. J. S. Buenconsejo, K. Ito H. Y. Kim and S. Miyazaki, Acta Mater. 56 (2008) 2063-2072.
5.H. Matsumoto, S. Watanabe and S. Hanada: J Alloy Compd. 439 (2007) 146-155.
6.W. D. Zhang, Y. Liu, H. Wu, M. Song, T. Y. Zhang, X. D. Lan and T. H. Yao, Mater. Charact. 106 (2015) 302-307.
7.E. W. Collings, The Physical Metallurgy of Titanium Alloys, (reproduced from Molchanova,) ASM Int., Materials Park, OH 1984, p. 54.
8.F. X. Xie, X. M. He, Y. M. Lv, M. P. Wu, X. B He and X.H. Qu: Corr. Sci. 95 (2015) 117-124.
9.S. H. Chang, J. C. Chen and K. T. Huang and J. K. Chen: Mater. Trans. 54 (2013) 1034-1039.
10.S. H. Chang and S. L. Chen: J. Alloys Compd. 585 (2014) 407-413.
11.M. Rahimiana, N. Ehsani and N. Parvin and H. R. Baharvandi: J. Mater. Process. Technol. 209 (2009) 5387-5393.
12.S. H. Chang and P. Y. Chang: Mater. Sci. Eng. A. 606 (2014) 150-156.
13.F. Z. Xing, N. Mitsuo, N. Masaaki and H. Junko: Acta Biomater. 8 (2012) 1990-1997.
14.K. Otsuka and X. Ren: Prog. Mater. Sci. 50 (2005) 511-678.
15.P. Sun, Z. Z. Fang and M. Koopman: Adv. Eng. Mater. 15 (2012) 1007-1013.
16.S. H. Chang, Y. K. Lin and K. T. Huang: Surf. Coat. Technol. 207 (2012) 571-578.
17.B. B. Panigrahi: Mater. Lett. 61 (2007) 152-155.
18.H. Fujii: Nippon steel technical report, 62, (1994) 74-79.
19.C. Liang, S. H. Chang, J. R. Huang, K. T. Huang and S. T. Lin: Mater. Trans. 56 (2015) 1127-1132.
20.S. H. Chang and C.C. Chen: Mater. Trans. 55 (2014) 1755-1761.
21.N. Ergin and O. Ozdemir: ACTA Phys. Pol. A 123 (2013) 248-249.
22.E. Dudrová and M. Kabátová: Powder Metall. Prog. 8 (2008) 59-75.
23.Y. L. Zhou and D. M. Luo: Mater. Charact. 62 (2011) 931-937.
24.B. S Sung, T. E. Park and Y. H. Yun: Adv. Mater. Sci. Eng. 2015 (2015) 1-7.
25.F. R. Marciano, E. C. Almeida, D. A. Lima-Oliveira, E. J. Corat and V. J. Trava-Airoldi: Diam. Relat. Mater. 19 (2010) 537-540.
26.R. L. O. Basso, R. J. Candal, C. A. Figueroa, D. Wisnivesky and F. Alvarez: Surf. Coat. Technol. 203 (2009) 1293-1297.
27.S. H. Chang, T. P. Tang and K. T. Huang: ISIJ Int. 50 (2010) 569-573.
28.X. Zhao, M. Niinomi, M. Nakai, J. Hieda. Beta type Ti–Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomaterialia Vol.8 (2012) pp 1990–1997.
29.W.F. Ho, S.C. Wu, S.K. Hsu, L.S. Fang, H.C. Hsu. Bond strength of Ti–5Cr based alloys to dental porcelain with Mo addition. Materials and Design Vol.43 (2013) pp 233–236
30.G.W. Franti, J.C. Williams, and H.I. Aaronson: Metall. Trans. A, 1978, vol. 9A, pp. 1641–49.
31.R.I Jaffe: in Progress in Metal Physics, B. Chalmers and R. King, eds., Pergamon Press, London, 1958, vol. 7, pp. 65–163.
32.S. Banerjee and P. Mukhopadhyay: in Phase Transformation: Examples from Titanium and Zirconium Alloys, Pergamon Press, Oxford, United Kingdom, 2004, pp. 670–75.
33.M. Hillert: in Interscience, V.F. Zackay and H.I. Aaronson, New York, NY, 1962, pp. 197–247.
34.C.W. Spencer and D.J. Mack: in Interscience, V.F. Zackay and H.I. Aaronson, eds., New York, NY, 1962, pp. 549–603.
35.H.J. Lee and H.I. Aaronson: J. Mater. Sci., 1988, vol. 23, pp. 150– 60.
36.S.A. Souza, C.R.M. Afonso, P.L. Ferrandini, A.A. Coehlo, and R. Caram: MSE C, 2009, vol. 29, pp. 1023–28.
37.J.C. Williams, R. Taggart, and D.H. Polonis: Metall. Trans., 1970, vol. 1, pp. 2265–70.
38.Erlin Zhang, Fangbing Li, Hongying Wang, et al., A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property, Mater. Sci. Eng. C 33 (2013) 4280–4287.
39.Jie Liu, Xinxin Zhang, Hongying Wang, et al., The antibacterial properties and iocompatibility of a Ti–Cu sintered alloy for biomedical application, Biomed. Mater. 9 (2014) 025013 (11 pp.).
40.F.H. Froes, D. Eylon, G.E. Eichelman, H.M. Burte, J. Met. 2 (1980) 47–54.
41.T. Fujita, A. Ogawa, C. Ouchi, H. Tajima, Mater. Sci. Eng. A213 (1996) 148– 153.
42.V.S. Moxson, O.N. Senkov, F.H. Froes, Int. J. Powder Metall. 34 (1998) 45–53.
43.M. Hagiwara, Y. Kaieda, Y. Kawabe, S. Miura, ISIJ Int. 31 (1991) 922–930.
44.M. Hagiwara, S. Emura, Mater. Sci. Eng. A352 (2003) 85–92.
45.T.E. Norgate, G. Wellwood, JOM 9 (2006) 58–62.
46.T. Saito, H. Takamiya, T. Furuta, Mater. Sci. Eng. A243 (1998) 273–278
47.Cui Chun-xiang, Hu Bao-Min, Zhao Lichen and Liu Shuang-jin, Titanium alloy production technology, market prospects and industry development, Materials and Design Vol.32, 2011, pp. 1684-1691。
48.C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, New York, Weinheim, Wiley-VCH, John Wiley, 2003, pp. 121-154.
49.D.M. Brunette, Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications, 2001, Berlin, New York, Springer, 2001, pp. 112-129.
50.M.J. Donachie, Titanium, a technical guide, 2nd edition, Materials Park, OH, ASM International , 2000, pp. 217-236.
51.G.C. Obasi, O.M. Ferri, T. Ebel and R. Bormann, Influence of processing parameters on mechanical properties of Ti-6Al-4V alloy fabricated by MIM, Materials Science and Engineering A 527, 2010, pp. 3929-3935.
52.Y. Liu, L.F. Chen, H.P. Tang, C.T. Liu, B. Liu and B.Y. Huang, Design of powder metallurgy titanium alloys and composites, Materials Science and Engineering A 418, 2006, pp. 25-35.
53.Margam Chandrasekaran and Zhang Su Xia, Effect of alloying time and composition on the mechanical properties of Ti alloy, Materials Science and Engineering A 394, 2005, pp. 220-228.
54.M.A. Mihaela1, G. Brânduşa, G. Nicolaeand and A. Iuliac, Corrosion Behaviour in Ringer Solution of Ti-Mo Alloys used for Orthopaedic Biomedical Applications. Solid State Phenomena Vol.188, 2012, pp. 98-101.
55.T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno and Y. Oda. The grind ability and wear of Ti-Cu alloys for dental applications. JOM Vol. 56 Issue 2, 2004, pp. 46-48.
56.A. Cremasco, A.D. Messias, A.R. Esposito, E. A. de Rezende Duek and R. Caram, Effects of alloying elements on the cytotoxic response of titanium alloys. Materials Science and Engineering C Vol.31, 2011, pp. 833-839.
57.Wislei R, Osorio, Alessandra Cremasco, Protasio N, Amauri Garcia and Rubens Caram, Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications, Electrochimica Acta 55, 2010, pp. 759-770.
58.Jose´ Roberto Severino Martins, Jr and Carlos Roberto Grandini, Structural characterization of Ti-15Mo alloy used as biomaterial by Rietveld method. J. Appl. Phys. Vol.111, 2012, 083535.
59.A. Carman, L.C. Zhang,1, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk and E.V. Pereloma, Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-β titanium alloy, Materials Science and Engineering A 528, 2011, pp. 1686-1693。
60.林殿傑,鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究, 國立成功大學材料科學及工程學系博士論文,pp. 92-98.61.R.P. Siqueira, H.R.Z. Sandima, A.O.F. Hayama and V.A.R. Henriques, Microstructural evolution during sintering of the blended elemental Ti-5Al-2.5Fe alloy, Journal of Alloys and Compounds 476, 2009, pp. 130-137.
62.Y.Q. Zhao, S.W. Xin and W.D. Zeng, Effect of major alloying elements on microstructure and mechanical properties of a highlyβ stabilized titanium alloy, Journal of Alloys and Compounds 481, 2009, pp. 190-194.
63.L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer and E. Gordo, Inductive hot-pressing of titanium and titanium alloy powders, Materials Chemistry and Physics, Vol.131, 2012, pp. 672-679.
64.S. Sun, M. Wang, L. Wang, J. Qin, W. Lu and D. Zhang, The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite, Composites: Part B, vol. 43, 2012, pp.3334-3337
65.Hugh O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing, and applications, Park Ridge, N.J.: Noyes Publications, c1996, pp. 39-43.
66.H.W. Wang, J.Q. Qi, C.M. Zou, D.D. Zhu and Z.J. Wei, High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites, Materials Science and Engineering A, vol. 545, 2012, pp. 209-213.
67. E. A. Levashov, V. V. Kurbatkina, A. A. Zaitsev, S. I. Rupasov, E. I. Patsera, A.A. Chernyshev, Ya.V. Zubavichus and A.A. Veligzhanin, Structure and Properties of Precipitation_Hardening Ceramic Ti-Zr-C and Ti-Ta-C Materials, The Physics of Metals and Metallography, Vol. 109, No. 1, 2010, pp. 95-105.
68. H. Choe, S. Abkowitz, S.M. Abkowitz and D.C. Dunand, Mechanical properties of Ti-W alloys reinforced with TiC particles, Materials Science and Engineering A, vol. 485, 2008, pp. 703-710.
69. 黃坤祥,粉末冶金學,第十章,中華民國粉末冶金協會,第三版, 2015年, pp. 299-320.
70. A. Ota, H. Egawa, H. Izui, Mechanical properties and wear resistances of TiC or B4C reinforced Ti-6Al-4V prepared by spark plasma sintering, Materials Science Forum, vol. 706-709, 2012, pp. 222-227.
71. C. Leyens and M. Peters, Titanium and titanium alloys: fundamentals and applications, New York, Weinheim, Wiley-VCH, John Wiley, 2003, pp. 121-154.
72. S. Gollapudi, R. Sarkar, U.C. Babu, R. Sankarasubramanian, T.K. Nandy and A.K. Gogia, Microstructure and mechanical properties of a copper containing three phase titanium alloy, Materials Science and Engineering A, vol. 528, 2011, pp. 6794-6803.
73. X. Sauvage, P. Jessner, F. Vurpillot, R. Rippan, Scr. Mater. 58 (2008) 1125-1128.
74. S.-H. Chang, S.-H. Chen, K.-T. Huang, C. Liang, Powder Metall. 56 (1) (2013) 77-82.
75. A. Lamperti, P.M. Ossi and V.P. Rotshtein: Surf. Coat. Technol. 200 (2006) 6373-6377.
76. I. Lahiri and S. Bhargava: Powder Technol. 189 (2009) 433-438.
77. C.G. Zhang, Z.M. Yang and B.J. Ding: Mod. Phys. Lett. B. 20 (2006) 1329-1334.
78. S.H. Chang, T.P. Tang, K.T. Huang and F.C. Tai: Powder Metall. 56 (2013) 77-82.
79. S.H. Chang, S.H. Chen and K.T. Huang: Mater. Trans. 53 (2012) 1689-1694.
80. S.H. Chang, S.H. Chen and K.T. Huang: Mater. Trans. 54 (2013) 1857-1862.
81. Z.H. Qiao, X.F. Ma, W. Zhao, H.G. Tang and B. Zhao: J. Alloys Compd. 462 (2008) 416-420.
82. X.M. Duan, D.C. Jia, Z.L. Wu, Z. Tian, Z.H. Yang, S.G. Wang and Y. Zhou: Scr. Mater. 68 (2013) 104-107.
83. W.T. Lo, P.K. Nayak, H.H. Lu, D.F. Lii and J.L. Huang: Mater. Sci. Eng. B. 172 (2013) 18-23.
84. K.B. Gerasimov, S.V. Mytnichenko, S.V. Pavlov, V.A. Chernov and S.G. Nikitenko: J. Alloys Compd. 252 (1997) 179-183.
85. X. Wang, Z.Z. Fang and H.Y. Sohn: Int. J. Refract. Met. Hard Mat. 26 (2008) 232-241.
86. Z.Z. Fang, X. Wang, T. Ryu, K.S. Hwang and H.Y. Sohn: J. Refract. Met. Hard Mat. 27 (2009) 288-299.
87. H.S. Huang, I.T. Hong, H.G. Dong and C.H. Chiu: Bulletin of Powder. Metall. Association. 35 (2010) 161-167.