|
[1] Schlapbach, L and Züttel, A. (2001). Hydrogen-storage materials for mobile applications.Nature, 414( 6861), 353-358. [2] Ogden, J. M . (2002). Hydrogen: The fuel of the future?. Physics Today, 55(4), 69-75. [3] Jain, I. P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35(10), 5133-5144. [4] Park, M., Shim, J.-H., Lee, Y.-S., Im, Y. H., and Cho, Y. W. (2013). Mitigation of degradation in the dehydrogenation behavior of air-exposed MgH2 catalyzed with NbF5. Journal of Alloys and Compounds, 575, 393-398. [5] Dornheim, M., Doppiu, S., Barkhordarian, G., Boesenberg, U., Klassen, T., Gutfleisch, O., and Bormann, R. (2007). Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Materialia, 56(10), 841-846. [6] Chourashiya, M., Yang, D.-C., Park, C.-N., and Park, C.-J. (2012). Effects of the preparative parameters of hydriding combustion synthesis on the properties of Mg–Ni–C as hydrogen storage material. International Journal of Hydrogen Energy, 37(5), 4238-4245. [7] Chen, B.H., Kuo, C.H., Ku, J.R., Yan, P.S., Huang, C.J., Jeng, M.S., and Tsau, F.H. (2013). Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs. Journal of Alloys and Compounds, 568, 78-83. [8] Züttel, A. (2004). Hydrogen storage method. The Science of Nature, 91(4), 157-72. [9] The Swiss Hydrogen Association,H2 Storage http://www.hydropole.ch/indwx.php?go=hydrogen_storage (09.06.2017) [10] Riis, T., Hagen, E.F., Vie, P.J.S. and Uleberg, Ø. (2006), Hydrogen Production and Storage--RandD Priorities and Gaps, Hydrogen Implementing Agreement, OECD/IEA, p.6. [11] Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Sousa ,J. M. G., Ferreira, A. L. C., Campos, J. and Gracio, J. (2012). Hydrogen Storage for Energy Application., Chemical Engineering. 10, in: J. Liu (Ed.), Hydrogen Storage, Intech Open, 243-266. [12] Yamaguchi, M. and Akiba, E. (1994), Electronic and Magnetic Properties of Metals and Ceramics Part II (K.H.J. Buschow, Ed.),3, 333 [13] Zuttel, A. (2003), Materials for hydrogen storage , materials today,6(9),24-33. [14] Martin, M., Borkhart , C. G. C., Fromm,E. (1996). Absorption and desorption kinetics of hydrogen storage alloys, Journal of Alloys and Compounds, 238, 193-201. [15] Xiong, R., Sang, G., Zhang, G., Yan, X., Li, P., Yao, Y. ,Tang, T. (2017). Evolution of the active species and catalytic mechanism of Ti doped NaAlH4 for hydrogen storage, International Journal of Hydrogen Energy, 42(9), 6088-6095. [16] Li, C., Peng, P., Zhou, D. W., and Wan, L. (2011). Research progress in LiBH4 for hydrogen storage: A review, International Journal of Hydrogen Energy, 36(22), 14512-14526. [17] Sandrock, G. (1999). A panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloys and Compounds, 877-888. [18] Zaluska, A., Zaluski, L., Strőm-Olsen, J.O. (2001), Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Applied Physics A Materials Science & Processing, 72 (2), 157-165. [19] Asselli, A. A. C., Santos, S. F., and Huot, J. (2016). Hydrogen storage in filed magnesium, Journal of Alloys and Compounds, 687, 586-594. [20] Jia, Y., Sun, C., Shen, S., Zou, J., Mao, S. S., and Yao, X. (2015). Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renewable and Sustainable Energy Reviews, 44, 289-303. [21] Zhou, C., Fang, Z. Z., and Sun, P. (2015). An experimental survey of additives for improving dehydrogenation properties of magnesium hydride, Journal of Power Sources, 278, 38-42. [22] Niaz, N. A., Ahmad, I., Khan, W. S., and S.TajammulHussain. (2012). Synthesis of Nanostructured Mg–Ni Alloy and Its Hydrogen Storage Properties, J. Mater. Sci. Technol, 28, 401–406. [23] Cermak, J., and David, B. (2011). Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2, International Journal of Hydrogen Energy, 36(21), 13614-13620. [24] Callini, E., Pasquini, L., Jensen, T. R., and Bonetti, E. (2013). Hydrogen storage properties of Mg–Ni nanoparticles, International Journal of Hydrogen Energy, 38(27), 12207-12212. [25] Urretavizcaya, G., Fuster, V., and Castro, F. J. (2011). High pressure DSC study of hydrogen sorption in MgH2/graphite mixtures: Effects of sintering and oxidation, International Journal of Hydrogen Energy, 36(9), 5411-5417. [26] Lototskyy, M., Sibanyoni, J. M., Denys, R. V., Williams, M., Pollet, B. G., and Yartys, V. A. (2013). Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57, 146-160. [27] Chen, B.H., Kuo, C.H., Ku, J.R., Yan, P.S., Huang, C.J., Jeng, M.-S., and Tsau, F.-H. (2013). Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs, Journal of Alloys and Compounds, 568, 78-83. [28] Lillo-Ródenas, M. A., Guo, Z. X., Aguey-Zinsou, K. F., Cazorla-Amorós, D., and Linares-Solano, A. (2008). Effects of different carbon materials on MgH2 decomposition, Carbon, 46(1), 126-137. [29] Wang, L., and Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover – a review, Energy & Environmental Science, 1(2), 268. [30] Kim, B.J., Lee, Y.S., and Park, S.J. (2008). A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers, International Journal of Hydrogen Energy, 33(15), 4112-4115. [31] Park, S., Kim, B., Lee, Y., and Cho, M. (2008). Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers, International Journal of Hydrogen Energy, 33(6), 1706-1710. [32] Lin, S. S. Y., Yang, J., and Kung, H. H. (2012). Transition metal-decorated activated carbon catalysts for dehydrogenation of NaAlH4, International Journal of Hydrogen Energy, 37(3), 2737-2741. [33] Yuan, J., Zhu, Y., Li, Y., Zhang, L., and Li, L. (2014). Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride, International Journal of Hydrogen Energy, 39(19), 10184-10194. [34] Ruse, E., Pevzner, S., Pri Bar, I., Nadiv, R., Skripnyuk, V. M., Rabkin, E., and Regev, O. (2016). Hydrogen storage and spillover kinetics in carbon nanotube-Mg composites, International Journal of Hydrogen Energy, 41(4), 2814-2819. [35] Chourashiya, M., Yang, D.C., Park, C.N., and Park, C.J. (2012). Effects of the preparative parameters of hydriding combustion synthesis on the properties of Mg–Ni–C as hydrogen storage material, International Journal of Hydrogen Energy, 37(5), 4238-4245. [36] Lillo-Ro´denas, M. A., Aguey-Zinsou, K. F., Cazorla-Amoro´s, D., Linares-Solano, A., and Guo, a. Z. X. (2008). Effects of Carbon-Supported Nickel Catalysts on MgH2 Decomposition, The Journal of Physical Chemistry C, 112, 5984-5992. [37] Suryanarayana, C.. (2011). Mechanical alloying and milling, Progress in Materials Science, 46, 1-184.
|