跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李忠穎
研究生(外文):Chung-Ying Lee
論文名稱:利用精密加工於曲面開發單軸仿生複眼透鏡
論文名稱(外文):Fabricating bionic compound eye on non-planar substrate by precise micromachining process
指導教授:陳品銓
指導教授(外文):Pin-Chuan Chen
口試委員:鄧昭瑞修芳仲陳亮光
口試委員(外文):Geo-Ry TangFang-Jung ShiouLiang-kuang Chen
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:184
中文關鍵詞:精密加工曲面加工三維度微流道可調式微透鏡陣列複眼仿生透鏡陣列
外文關鍵詞:precision machiningnon-planar surface machiningnon-planar heterogeneous bondingmicrolens array (MLAS)artificial compound eye
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
  本研究的長遠目標是開發一新穎製程技術,在曲面基材上製造微透鏡陣列,做為仿生複眼透鏡陣列,往後可以應用在光電領域以及物聯網領域。在本論文中,將利用多軸精密加工技術、模具設計、澆注技術、以及異質高分子基材結合技術在曲面基材上製造單軸向之複眼微透鏡陣列。
本論文分成兩階段,第一階段是在聚甲基丙烯酸甲酯(PMMA)基材上製造三維度微流道,所涉及的技術為多軸精密加工與曲面高分子基材結合技術,本階段研究重點在於討論數個加工參數對於製造三維度微流道晶片的影響,例如刀具種類的選擇、滾珠螺桿背隙所造成的影響、刀具路徑公差設定、以及如何在曲面基材上完成高分子基材結合等等。第二階段為第一階段成果的延伸,目標是在曲面基材上製造單軸向的微透鏡陣列,過程中將利用第一階段的成果在曲面基材上製造上下模具,再利用上下模具結合後的間隙及澆注技術在聚二甲基矽氧烷(PDMS)薄膜上製造透鏡陣列的微結構,最後利用非平面異質高分子結合技術將聚二甲基矽氧烷(PDMS)薄膜與聚甲基丙烯酸甲酯(PMMA)曲面基材結合,完成曲面基材上單軸向之複眼微透鏡陣列。
  本研究的結論為:(1)研究曲面基材上之多軸精密加工以及開發非平面異質基材結合技術,發展出非平面生醫晶片,此研究成果讓發展三十年的生醫晶片由平面結構延伸成立體結構,讓生醫晶片融入更多的穿戴式檢測裝置;(2)本研究利用精密加工製造不同樣式或大小的微透鏡模具,再透過微流道內的壓力調整,在同樣基材上但不同地點,製造出不同尺寸和曲率半徑之透鏡陣列,後續可利用此可調式晶片為母模,搭配翻模與電鍍技術,即可製造出量產微透鏡陣列之金屬模具,再用射出成型技術製造拋棄式微透鏡陣列;(3)相較於其他微透鏡陣列的製程方法,本論文的製程方法可以在曲面上製造出微透鏡陣列,做為仿生複眼透鏡陣列,這對於其他製程技術而言是相當困難的。
The long-term goal of this research is to develop a novel manufacturing process to create microlens array (MLAS) on non-planar substrates, which can be used as bionic compound eye for applications in the optoelectric or internet-of-things (IOT) fields. Multiple manufacturing processes would be used to crate MLAS in this article, including precision machining, mold insert design, casting technique, and heterogeneous bonding technique between non-planar substrates.
This thesis can be separated into two major stages: the goal of the first stage is to fabricate non-planar microchannel on PMMA substrate by using precision machining and non-planar bonding technique. The influence from several parameters were discussed in the first stage, including micromilling tool selection, plan of the cutting path, the backlash from the ball screw, and the approach for bonding non-planar substrates. The second stage of the extension form the first stage, and the goal is to fabricate MLAS on non-planar substrates. The fabrication process included fabrication of top and bottom mold inserts, PDMS casting and demolding from the assembled mold inserts, and heterogeneous bonding between PDMS membrane and hemisphere PMMA substrate.
The conclusions from this research are: (1) studying precision machining on non-planar substrates and developing bonding methods for non-planar heterogeneous substrates, which can create disposable non-planar biochips for more application field like wearable devices; (2) this manufacturing approach can create various MLAS in terms of diameters and curvature on the same substrate. With replication technique and electroplating, the metal mold insert for MLAS can be fabricated and used for mass production of disposable MLAS; (3) this manufacturing approach also can be used for creating MLAS on non-planar substrates as bionic compound eye, which is advantageous compared to other reported methods for MLAS.
中文摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄 XI
表目錄 XXI
符號表 XXII

第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 2
1.3研究方法 7
1.4論文架構 8
第二章 文獻回顧 11
2.1三維度微流道製程相關文獻 11
2.1.1飛秒雷射技術 12
2.1.2 3D列印技術 13
2.1.3 PDMS製作技術 16
2.1.4 其他特殊技術 18
2. 2微透鏡陣列製程相關文獻 20
2.2.1平面微透鏡陣列製程 21
2.2.2曲面複眼製程 26
第三章 微銑削製程 29
3.1 微銑削簡介 29
3.2微銑削機之操作使用方式 32
3.3程式碼之路徑規劃 34
3.3.1公差設定值 35
3.3.2螺桿背隙問題 37
3.3.3刀具種類問題 41
3.4晶片結構之模具設計與製造 43
3.4.1 PMMA流道晶片設計 43
3.4.2 PDMS三維度微流體晶片之模具說明 58
第四章 三維度曲面流道製程 71
4.1PDMS三維度複眼流道製程 71
4.1.1 PDMS曲面複眼薄膜結構製作方法 74
4.1.2 曲面複眼封裝黏合製程 76
4.2 PMMA三維度塑料流道黏合製程 79
4.2.1 溶液結合法(Solvent Bonding) 79
4.2.2 酒精溶液結合製作過程 80
第五章 實驗設備與研究方法 83
5.1研究設備 84
5.1.1製程設備 84
5.1.2量測設備 90
5.2研究方法 95
5.2.1壓克力(PMMA)-流道截面結構評估 97
5.2.2壓克力(PMMA)-流道酒精黏合壓力測試 99
5.2.3複眼透鏡-母模具小圓柱結構測試 102
5.2.4複眼透鏡-透鏡直徑均勻程度 103
第六章 實驗結果與討論 109
6.1壓克力(PMMA)-流道結面結構評估 109
6.2壓克力(PMMA)-流道酒精黏合壓力測試 117
6.3複眼透鏡-母模具小圓柱結構測試 120
6.4複眼透鏡-透鏡直徑均勻程度 127
第七章 結論與未來展望 132
7.1結論 132
7.2未來展望 136
參考文獻 139
附錄A SEM截面量測實驗數據 150
附錄B 複眼透鏡-母模具小圓柱結構量測實驗數據 152
附錄C 透鏡直徑均勻度量測實驗數據 154
附錄D 透鏡高度(Sag)量測實驗數據 155
附錄E 精密加工微銑削參數表 156
[1]C. T. Wittwer, G. C. Fillmore, D.J. Garling, “Minimizing the time required for DNA amplification by efficient heat transfer to small sample,” Analytical Biochemistry 186, pp. 328-331, 1990.
[2]C. T. Wittwer, D. J. Garling, "Rapid cycle DNA amplification: time and temperature optimization," BioTechniques 10, pp. 76–83, 1991.
[3]G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, pp. 368-373, 2006.
[4]Lab-on-Chip.gene-quantification.info.Available: http://www.gene-quantification.de/lab-on-chip.html
[5]Xiangdong Xue, Silvia Marson, Mayur K Patel, Usama M Attia, Chris Bailey, William O’Neill, David Topham, Marc P.Y. Desmulliez, “Biofluid Behaviour in 3D Microchannel Systems: NumericalAnalysis and Design Development of 3D Microchannel Biochip Separators,” Electronic Components and Technology Conference, 2010.
[6]Yang Liao, Jiangxin Song, En Li, Yong Luo, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, Katsumi Midorikawa, “Rapid prototyping og three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746-749, 2012.
[7]Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian, Hongkai Wu, “Direct, one-step molding of 3S-printed structures for convenient fabrication of truly 3D PDMS microfluidic chip,” Microfluid Nanofluid, 19:9-18, 2015.
[8]Yan He, Bai-Ling Huang, Dong-Xiao Lu, Jia Zhao, Bin-Bin Xu, Ran Zhang, Xiao-Feng Lin, Qi-Dai Chen, Juan Wang, Yong-Lai Zhang, Hong-Bo Sun, “Overpass at the junction of a crossed microchannel: An enabler for 3D microfluidic chips,” Lab Chip, 3866-3869, 2012,12.
[9]Daniel T. Chiu, Noo Li Jeon, Sui Huang, Ravi S. Kane, Christopher J. Wargo, Insung S. Choi, Donald E. Ingber, George M. Whitesides, “Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems,” PNAS, 97(6), 2413, March 14, 2000.
[10]Kang Ning Ren, Jianhua Zhou, Hongkai Wu, “Materials for Microfluidic Chip Fabrication,” Accounts of Chemical Research, November 2013.
[11]Daniel Lim, Yoko Kamotani, Brenda Cho, Jyotirmoy Mazumder, Shuichi Takayama, “Fabrication og microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3, 318-323, 2003.
[12]Jing-Liang Li, Daniel Day, Min Gu, “Design of a compact microfluidic device for controllable cell distribution,” Lab Chip 10, 3054-3057, 2010.
[13]Krzyszof Cieslicki, Adam Piechna, “Investigations of mixing process in microfluidic manifold designed according to biomimetic rule,” Lab Chip 9, 726-732, 2009.
[14]Andres J. Calderon, Yun Seok Heo, Dongeun Huh, Nobuyuki Futai, Shuichi Takayama, J.Brian Fowlkes, Joseph L. Bull, “Microfluidic model on bubble lodging in microvessel bifurcations,” APPLIED PHYSICS LETTERS 89, 244103, 2006.
[15]Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian, Hongkai Wu, “Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips,” Microfluid Nanofluid, 19:9-18, 2015,
[16]Dong S. Zhao, Binayak Roy, Matthew T. McCormick, Werner G. Kuhr, Sara A. Brazill, “Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision maching,” Lab Chip 3, 93-99, 2003.
[17]Mary E. Wilson, Nithyanand Kota, YongTae Kim, Yadong Wang, Donna B. Stolz, Philip R. LeDuc, O.Burak Ozdoganlar, “Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography,” Lab Chip 11, 1550-1555, 2011.
[18]Bauerle, Dieter W, “Laser Processing and Chemistry,” 2011.
[19]鄭中緯,飛秒雷射之精微加工技術.,機械工業雜誌,2013年2月號
[20]李銘峰,許芳文,吳秉翰,蘇信嘉,曹宏熙,胡杰,利用飛秒雷射微奈米加工技術於波片上製作高深寬比之微流道結構,Journal of Science and Engineering Technology, 5(4), pp. 49-55, 2009.
[21]Rafal Walczak, Krzysztof Adamski, “Inkjet 3D printing of microfluidic structures-on yhe selection of the printer towards printing your own microfluidic chips,” J.Microeng 25, 085013, 2015.
[22]Yongha Hwang, Omeed H. Paydar, Robert N. Candler, “3D printer molds for non-planar PDMS microfluidic channels,” Elsevier B.V. All rights, 0924-4247, 2015.
[23]Casey C.Glick, Mitchell T. Srimongkol, Aaron J. Schwartz, William S. Zhuang, Joseph C. Lin, Roseanne H. Warren, Dennis R. Tekell, Panitan A. Satamalee, Liwei Lin, “Rapid assembly of multilater microfluidic structures via 3D-printed transfer molding and bonding,” Microsystems & Nanoengineering 2, 16063, 2016.
[24]Y. Oppliger, P. Sixt, J.M. Stauffer, J.M. Mayor, P. Regnault, G. Voirin, “One-step 3D Shaping Using a Gray-Tone Mask for Optical and Microelectronic Applications,” Microelectronic Engineering 23, 449-454, 1994.
[25]Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood, David J.Beebe, Member, IEEE, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal Of Microelectromechanical System, vol. 9, March 2000.
[26]Janelle R. Anderson, Daniel T. Chiu, Rebecca J. Jackman, Oksana Cherniavskaya, J. Cooper MxDonald, Hongkai Wu, Sue H. Whitesides, George M. Whitesides, “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem72, 3158-3164, 2000.
[27]Mengying Zhang, Jinbo Wu, Limu Wang, Kang Xiao, Weijia Wen, “A simple method for fabricatinh multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip 10, 1199-1203, 2010.
[28]Homgkai Wu, Teri W. Odom, Daniel T. Chiu, George M. Whitesides, “Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS,” J.AM.CHEM.SOC. 125, 554-559, 2003.
[29]Mohan K. S. Verma, Abhijit Majumder, Animangsu Ghatak, “Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive,” Langmuir , 22(24), 2006.
[30]Chi-Shuo Chen, David N. Breslauer, Jesus I. Luna, Anthony Grimes, Wei-cjun Chin, Luke P. LEE, Michelle Khine, “Shrink-Drink microfluisics: 3D polystyrene chips,” Lab Chip 8, 622-624, 2008.
[31]Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, Luke P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” OPTICS EXPRESS 2370,11(19), 2003.
[32]Mao-Kuo Wei, I-Ling Su, Yi-Jia Chen, Ming Chang, Hong-Yi Lin, Tung-Chuan Wu, “The influence od a microlens array on planar organic light-emitting devices,” J.Micromech. Microeng. 16, 368-374, 2006.
[33]Christopher Altman, “Microlens array fabrication via microjet printing technologies,” Workshop on Optical Fabrication Technologies, FISBA Optik, TU Delft Oft/AP3601, 2007.
[34]S. Audran, J. Vaillant, V. Farys, F. Hirigoyen, E. Huss, B.Mortini, C. Cowache, L.Berthier, E. Mortini, J. Fantuz, O. Arnaud, L. Depoyan, F. Sundermann, C. Baron, J-P. Reynard, “Grayscale lithography process study applied to zero-gap microlenses for sub 2um CMOS image sensors,” Proc. Of SPIE, 7639(763910-1), 2016.
[35]Y. Fan, H. Li, and I. G. Foulds, “Integrated Lenses in Polystyrene Microfluidic Devices,’’IEEE NEMS2013,Suzhou, China, April7-10, 2013.
[36]S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,”Optics Express, 12(25), pp. 6366-6371, 2004.
[37]張紅鑫,盧振武,王瑞雄,李風有,劉華,孫強,曲面複眼成像系統研究,光學精密工程,14(3),2006.
[38]Byoung Guk Park, Kiwoon Choi, Chul Jin Jo, Han Sup Lee, “Micro lens-on-lens array,” Soft Matter 8, 1751, 2012.
[39]D.Zhu, C. Li, X. Zeng, H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” Transducers 2009, Denver, CO, USA, June 21-25, 2009.
[40]C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review," Microelectronics Journal 35, pp. 131-143, 2004.
[41]S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on 26, pp. 1880-1886, 1979.
[42]D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry 64, pp. 1926-1932, 1992.
[43]C. H. Ahn, C. Jin-Woo, G. Beaucage, J. H. Nevin, L. Jeong-Bong, A. Puntambekar, et al., "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE 92, pp. 154-173, 2004.
[44]P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices," ELECTROPHORESIS 26, pp.1792-1799, 2005.
[45]Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab on a Chip 5, pp. 869-876, 2005
[46]M. Bua, T. Melvin, G.J. Ensell, J.S. Wilkinson, A.G.R. Evans, "A new masking technology for deep glass etching and its microfluidic application," Sensors and Actuators A, 115, pp.476-482, 2004.
[47]A. Berthold, P. M. Sarro, M.J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices," Proceedings of the SeSens workshop, 2000.
[48]L. Ceriottia, K. Weibleb, N.F. de Rooija, E. Verpoortea, "R ectangular channels for lab-on-a-chip applications," Microelectronic Engineering, 67-68, pp.865-871, 2003.
[49]D. Mijatovic, J.C.T. Eijkel, A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up—a review," Lab chip, 5, pp.492-500, 2005.
[50]T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, "Plastic advances microfluidic devices," Anal. Chem., 74, pp. 78A-86A, 2002.
[51]P. Vulto, T. Huesgen, B. Albrecht, G. A. Urban, "A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist," J. Micromech. Microeng., 19, 077001, 2009.
[52]B.J. Polk, A. Stelzenmuller, G. Mijares,W. MacCrehanb, M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B, 114, pp.239-247, 2006.
[53]E.T. Enikov, J.G. Boyd, "Electroplated electro-fluidic interconnects for chemical sensors,"Sensors and Actuators, 84, pp.161-164, 2000.
[54]J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang ,T.H. Young,"Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip," J. Micromech. Microeng, 15, pp.1147-1156, 2005.
[55]C.G.K. Malek, "Laser processing for bio-microfluidics applications (part II)," Anal Bioanal Chem, 385, pp.1362-1369, 2006.
[56]W.C. Jung, Y.M. Heo, G.S. Yoon, K.H. Shin, S.H. Chang, G.H. Kim, M.W. Cho,"Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips," Sensors, 7, pp.1643-1654, 2007.
[57]D.S. Zhao, B. Roy, M.T. McCormick, W.G. Kuhr, S.A. Brazill, "Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining, " Lab chip, 3, pp.93-99, 2003.
[58]J.S. Mecombera, D. Hurdb, P.A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools & Manufacture, 45, pp.1542-1550, 2005.
[59]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper, "High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters," Proc. of SPIE, 6112, pp.61120B1-12, 2005.
[60]M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, R. Hergenrödera, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices," Lab chip, 4, pp.220-224, 2004.
[61]G.S. Fiorini, D.T. Chiu, "Disposable microfluidic devices: fabrication, function, and application, " BioTechniques, 38, pp. 429-446, 2005.
[62]Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,’’ Journal of Micromechanics and Microengineering, 14, pp. 415-422, 2004.
[63]P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, “Optimization of Micromilling Microchannels on a Polycarbonate Substrate,’’ International journal of precision engineering and manufacturing, 15(1), pp149-154, 2014.
[64]David J. Guckenberger, Theodorus E. de Groot, Alwin M. D. Wan, David J. Beebe, Edmond W. K. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15, 2364-2378, 2015.
[65]P.C. Chen, C.W. Pan, W.C. Lee, and K.M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate", The International Journal of Advanced Manufacturing Technology, 71, 1623-1630, 2014.
[66]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper,"High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters", Proc. of SPIE, 6112, 61120B1-61120B 12, 2005.
[67]鄭硯丰,毛細力驅動之血液分流晶片開發,國立台灣科技大學機械工程研究所,2015。
[68]Chi-Ho Yeung, Yusuf Altintas, Kaan Erkorkmaz, “Virtual CNC system. Part I. System architecture,” International Journal of Machine Tools& Manufacture 46, 1107-1123, 2006.
[69]S. Ehsan Layegh K. , I. Enes Yigit, Ismail Lazouglu, “Analysis of tool orientation for 5-axis ball-end milling of flexible parts,” CIRP-Annals- Manufacturing Technology 64, 97-100, 2015.
[70]梁慶,廖前行,劉正陽,基於Pro/E及Mastercam的模具設計與製造,北京理工大學出版社,2012。
[71]K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob, “Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, 125, pp. 2413-2416, 2014.
[72]C. W. Beh, W. Zhouab, T. H. Wang, “PDMS-glass bonding using grafted polymeric adhesive-alternative process flow for compatibility with patterned biological molecules,” Lab Chip, 12, pp. 4120-4127, 2012.
[73]張義彬,利用可調式微流體晶片開發微透鏡陣列,國立台灣科技大學機械工程研究所,2016。
[74]L. Tang, M. S. Sheu, T. Chu, Y. H. Huang, “Anti-inflammatory properties of triblock siloxane copolymer-blended materials,’’ Biomaterials, 20, pp. 1365-1370, 1999.
[75]W. M. Choi and O. O. Park, “A soft-imprint technique for direst fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron Engineering, 70, pp. 131-136, 2003.
[76]D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,’’ Microelectronic Engineering, 2007.
[77]N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, H. Kurz, “Improved mold fabrication for the definition of high quality nanopatterns by soft UV-Nanoiprint lithography using diluted PDMS material,”Microelectronic Engineering, 84, pp. 904-908, 2007.
[78]K. Aran, L. A. Sasso, N. Kamdar and J. D. Zahn, “Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices,’’The Royal Society of Chemistry Lab Chip, 10, pp. 548-552, 2010.
[79]H.-T. Hsieh, V. Lin, J.-L. Hsieh, G. D. J. Su, “Design and fabrication of long focal length microlens arrays,’’Optics Communications 284 , 2011.
[80]許淑喬,微透鏡翻製製製作研究與分析,明新科技大學化學工程與材料科技研究所,2011。
[81]L. Tang and N. Y. Lee, "A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature", Lab Chip, 10, 1274–1280,2010.
[82]P. N. Nge, C. I. Rogers, A. T. Woolley, “Advances in Microfluidic Materials, Function, Interation and applications,” Chem Rev, 113(4), pp. 2550-25583, 2013.
[83]T. Chia-Wen, D. Don L, “Bonding of Thermoplastic polymer microfluidics,” Microfluidic and Nanofluids, 6(1), pp. 1-16, 2009.
[84]P. C. Chen, Y. M. Liu, H. C. Chou, “An adhesive bonding method with microfabricating micro pillars prevent clogging in a microchannel,” J. Micromech. Microeng, 26(4), P. 045003, 2016.
[85]R. Hoogenboom, C. R. Becer, C. Guerrero-Sanchez, S. Hoeppener, U. S. Schubert, “Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures,” Australian journal of chemistry, 63(8), pp.1173-1178, 2010.
[86]H. Tanisugi, H. Ohnuma, T. Kotaka, “Swelling Behavior of Bisphenol-A Polycarbonate-Polyoxyethylene Multiblock Copolymers in Ethanol/ Water Mixtures,” Polymer Journal. 16(8), pp. 633-640, 1984.
[87]Duong Huyen Lynh,應用於熱塑性材料微流體晶片之新型溶劑黏合方法,國立台灣科技大學機械工程研究所,2016。
[88]C. Zhang, D. Xing, and Y. Li, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends," Biotechnol Adv, vol. 25, pp. 483-514, Sep-Oct 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top