[1]C. T. Wittwer, G. C. Fillmore, D.J. Garling, “Minimizing the time required for DNA amplification by efficient heat transfer to small sample,” Analytical Biochemistry 186, pp. 328-331, 1990.
[2]C. T. Wittwer, D. J. Garling, "Rapid cycle DNA amplification: time and temperature optimization," BioTechniques 10, pp. 76–83, 1991.
[3]G. M. Whitesides, "The origins and the future of microfluidics," Nature 442, pp. 368-373, 2006.
[4]Lab-on-Chip.gene-quantification.info.Available: http://www.gene-quantification.de/lab-on-chip.html
[5]Xiangdong Xue, Silvia Marson, Mayur K Patel, Usama M Attia, Chris Bailey, William O’Neill, David Topham, Marc P.Y. Desmulliez, “Biofluid Behaviour in 3D Microchannel Systems: NumericalAnalysis and Design Development of 3D Microchannel Biochip Separators,” Electronic Components and Technology Conference, 2010.
[6]Yang Liao, Jiangxin Song, En Li, Yong Luo, Yinglong Shen, Danping Chen, Ya Cheng, Zhizhan Xu, Koji Sugioka, Katsumi Midorikawa, “Rapid prototyping og three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip 12, 746-749, 2012.
[7]Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian, Hongkai Wu, “Direct, one-step molding of 3S-printed structures for convenient fabrication of truly 3D PDMS microfluidic chip,” Microfluid Nanofluid, 19:9-18, 2015.
[8]Yan He, Bai-Ling Huang, Dong-Xiao Lu, Jia Zhao, Bin-Bin Xu, Ran Zhang, Xiao-Feng Lin, Qi-Dai Chen, Juan Wang, Yong-Lai Zhang, Hong-Bo Sun, “Overpass at the junction of a crossed microchannel: An enabler for 3D microfluidic chips,” Lab Chip, 3866-3869, 2012,12.
[9]Daniel T. Chiu, Noo Li Jeon, Sui Huang, Ravi S. Kane, Christopher J. Wargo, Insung S. Choi, Donald E. Ingber, George M. Whitesides, “Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems,” PNAS, 97(6), 2413, March 14, 2000.
[10]Kang Ning Ren, Jianhua Zhou, Hongkai Wu, “Materials for Microfluidic Chip Fabrication,” Accounts of Chemical Research, November 2013.
[11]Daniel Lim, Yoko Kamotani, Brenda Cho, Jyotirmoy Mazumder, Shuichi Takayama, “Fabrication og microfluidic mixers and artificial vasculatures using a high-brightness diode-pumped Nd:YAG laser direct write method,” Lab Chip 3, 318-323, 2003.
[12]Jing-Liang Li, Daniel Day, Min Gu, “Design of a compact microfluidic device for controllable cell distribution,” Lab Chip 10, 3054-3057, 2010.
[13]Krzyszof Cieslicki, Adam Piechna, “Investigations of mixing process in microfluidic manifold designed according to biomimetic rule,” Lab Chip 9, 726-732, 2009.
[14]Andres J. Calderon, Yun Seok Heo, Dongeun Huh, Nobuyuki Futai, Shuichi Takayama, J.Brian Fowlkes, Joseph L. Bull, “Microfluidic model on bubble lodging in microvessel bifurcations,” APPLIED PHYSICS LETTERS 89, 244103, 2006.
[15]Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian, Hongkai Wu, “Direct, one-step molding of 3D-printed structures for convenient fabrication of truly 3D PDMS microfluidic chips,” Microfluid Nanofluid, 19:9-18, 2015,
[16]Dong S. Zhao, Binayak Roy, Matthew T. McCormick, Werner G. Kuhr, Sara A. Brazill, “Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision maching,” Lab Chip 3, 93-99, 2003.
[17]Mary E. Wilson, Nithyanand Kota, YongTae Kim, Yadong Wang, Donna B. Stolz, Philip R. LeDuc, O.Burak Ozdoganlar, “Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography,” Lab Chip 11, 1550-1555, 2011.
[18]Bauerle, Dieter W, “Laser Processing and Chemistry,” 2011.
[19]鄭中緯,飛秒雷射之精微加工技術.,機械工業雜誌,2013年2月號[20]李銘峰,許芳文,吳秉翰,蘇信嘉,曹宏熙,胡杰,利用飛秒雷射微奈米加工技術於波片上製作高深寬比之微流道結構,Journal of Science and Engineering Technology, 5(4), pp. 49-55, 2009.
[21]Rafal Walczak, Krzysztof Adamski, “Inkjet 3D printing of microfluidic structures-on yhe selection of the printer towards printing your own microfluidic chips,” J.Microeng 25, 085013, 2015.
[22]Yongha Hwang, Omeed H. Paydar, Robert N. Candler, “3D printer molds for non-planar PDMS microfluidic channels,” Elsevier B.V. All rights, 0924-4247, 2015.
[23]Casey C.Glick, Mitchell T. Srimongkol, Aaron J. Schwartz, William S. Zhuang, Joseph C. Lin, Roseanne H. Warren, Dennis R. Tekell, Panitan A. Satamalee, Liwei Lin, “Rapid assembly of multilater microfluidic structures via 3D-printed transfer molding and bonding,” Microsystems & Nanoengineering 2, 16063, 2016.
[24]Y. Oppliger, P. Sixt, J.M. Stauffer, J.M. Mayor, P. Regnault, G. Voirin, “One-step 3D Shaping Using a Gray-Tone Mask for Optical and Microelectronic Applications,” Microelectronic Engineering 23, 449-454, 1994.
[25]Byung-Ho Jo, Linda M. Van Lerberghe, Kathleen M. Motsegood, David J.Beebe, Member, IEEE, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” Journal Of Microelectromechanical System, vol. 9, March 2000.
[26]Janelle R. Anderson, Daniel T. Chiu, Rebecca J. Jackman, Oksana Cherniavskaya, J. Cooper MxDonald, Hongkai Wu, Sue H. Whitesides, George M. Whitesides, “Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping,” Anal. Chem72, 3158-3164, 2000.
[27]Mengying Zhang, Jinbo Wu, Limu Wang, Kang Xiao, Weijia Wen, “A simple method for fabricatinh multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip 10, 1199-1203, 2010.
[28]Homgkai Wu, Teri W. Odom, Daniel T. Chiu, George M. Whitesides, “Fabrication of Complex Three-Dimensional Microchannel Systems in PDMS,” J.AM.CHEM.SOC. 125, 554-559, 2003.
[29]Mohan K. S. Verma, Abhijit Majumder, Animangsu Ghatak, “Embedded Template-Assisted Fabrication of Complex Microchannels in PDMS and Design of a Microfluidic Adhesive,” Langmuir , 22(24), 2006.
[30]Chi-Shuo Chen, David N. Breslauer, Jesus I. Luna, Anthony Grimes, Wei-cjun Chin, Luke P. LEE, Michelle Khine, “Shrink-Drink microfluisics: 3D polystyrene chips,” Lab Chip 8, 622-624, 2008.
[31]Nikolas Chronis, Gang L. Liu, Ki-Hun Jeong, Luke P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” OPTICS EXPRESS 2370,11(19), 2003.
[32]Mao-Kuo Wei, I-Ling Su, Yi-Jia Chen, Ming Chang, Hong-Yi Lin, Tung-Chuan Wu, “The influence od a microlens array on planar organic light-emitting devices,” J.Micromech. Microeng. 16, 368-374, 2006.
[33]Christopher Altman, “Microlens array fabrication via microjet printing technologies,” Workshop on Optical Fabrication Technologies, FISBA Optik, TU Delft Oft/AP3601, 2007.
[34]S. Audran, J. Vaillant, V. Farys, F. Hirigoyen, E. Huss, B.Mortini, C. Cowache, L.Berthier, E. Mortini, J. Fantuz, O. Arnaud, L. Depoyan, F. Sundermann, C. Baron, J-P. Reynard, “Grayscale lithography process study applied to zero-gap microlenses for sub 2um CMOS image sensors,” Proc. Of SPIE, 7639(763910-1), 2016.
[35]Y. Fan, H. Li, and I. G. Foulds, “Integrated Lenses in Polystyrene Microfluidic Devices,’’IEEE NEMS2013,Suzhou, China, April7-10, 2013.
[36]S. I. Chang and J. B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,”Optics Express, 12(25), pp. 6366-6371, 2004.
[37]張紅鑫,盧振武,王瑞雄,李風有,劉華,孫強,曲面複眼成像系統研究,光學精密工程,14(3),2006.
[38]Byoung Guk Park, Kiwoon Choi, Chul Jin Jo, Han Sup Lee, “Micro lens-on-lens array,” Soft Matter 8, 1751, 2012.
[39]D.Zhu, C. Li, X. Zeng, H. Jiang, “Hydrogel-actuated tunable-focus microlens arrays mimicking compound eyes,” Transducers 2009, Denver, CO, USA, June 21-25, 2009.
[40]C. K. Malek and V. Saile, "Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: a review," Microelectronics Journal 35, pp. 131-143, 2004.
[41]S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on 26, pp. 1880-1886, 1979.
[42]D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry 64, pp. 1926-1932, 1992.
[43]C. H. Ahn, C. Jin-Woo, G. Beaucage, J. H. Nevin, L. Jeong-Bong, A. Puntambekar, et al., "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE 92, pp. 154-173, 2004.
[44]P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices," ELECTROPHORESIS 26, pp.1792-1799, 2005.
[45]Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab on a Chip 5, pp. 869-876, 2005
[46]M. Bua, T. Melvin, G.J. Ensell, J.S. Wilkinson, A.G.R. Evans, "A new masking technology for deep glass etching and its microfluidic application," Sensors and Actuators A, 115, pp.476-482, 2004.
[47]A. Berthold, P. M. Sarro, M.J. Vellekoop, "Two-step glass wet-etching for micro-fluidic devices," Proceedings of the SeSens workshop, 2000.
[48]L. Ceriottia, K. Weibleb, N.F. de Rooija, E. Verpoortea, "R ectangular channels for lab-on-a-chip applications," Microelectronic Engineering, 67-68, pp.865-871, 2003.
[49]D. Mijatovic, J.C.T. Eijkel, A. van den Berg, "Technologies for nanofluidic systems: top-down vs. bottom-up—a review," Lab chip, 5, pp.492-500, 2005.
[50]T.D. Boone, Z.H. Fan, H.H. Hooper, A.J. Ricco, H. Tan, S.J. Williams, "Plastic advances microfluidic devices," Anal. Chem., 74, pp. 78A-86A, 2002.
[51]P. Vulto, T. Huesgen, B. Albrecht, G. A. Urban, "A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist," J. Micromech. Microeng., 19, 077001, 2009.
[52]B.J. Polk, A. Stelzenmuller, G. Mijares,W. MacCrehanb, M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B, 114, pp.239-247, 2006.
[53]E.T. Enikov, J.G. Boyd, "Electroplated electro-fluidic interconnects for chemical sensors,"Sensors and Actuators, 84, pp.161-164, 2000.
[54]J.Y. Cheng, M.H. Yen, C.W. Wei, Y.C. Chuang ,T.H. Young,"Crack-free direct-writing on glass using a low-power UV laser in the manufacture of a microfluidic chip," J. Micromech. Microeng, 15, pp.1147-1156, 2005.
[55]C.G.K. Malek, "Laser processing for bio-microfluidics applications (part II)," Anal Bioanal Chem, 385, pp.1362-1369, 2006.
[56]W.C. Jung, Y.M. Heo, G.S. Yoon, K.H. Shin, S.H. Chang, G.H. Kim, M.W. Cho,"Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips," Sensors, 7, pp.1643-1654, 2007.
[57]D.S. Zhao, B. Roy, M.T. McCormick, W.G. Kuhr, S.A. Brazill, "Rapid fabrication of a poly(dimethylsiloxane) microfluidic capillary gel electrophoresis system utilizing high precision machining, " Lab chip, 3, pp.93-99, 2003.
[58]J.S. Mecombera, D. Hurdb, P.A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools & Manufacture, 45, pp.1542-1550, 2005.
[59]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper, "High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters," Proc. of SPIE, 6112, pp.61120B1-12, 2005.
[60]M. Schilling, W. Nigge, A. Rudzinski, A. Neyerb, R. Hergenrödera, "A new on-chip ESI nozzle for coupling of MS with microfluidic devices," Lab chip, 4, pp.220-224, 2004.
[61]G.S. Fiorini, D.T. Chiu, "Disposable microfluidic devices: fabrication, function, and application, " BioTechniques, 38, pp. 429-446, 2005.
[62]Y.-C. Su, J. Shah, and L. Lin, “Implementation and analysis of polymeric microstructure replication by micro injection molding,’’ Journal of Micromechanics and Microengineering, 14, pp. 415-422, 2004.
[63]P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, “Optimization of Micromilling Microchannels on a Polycarbonate Substrate,’’ International journal of precision engineering and manufacturing, 15(1), pp149-154, 2014.
[64]David J. Guckenberger, Theodorus E. de Groot, Alwin M. D. Wan, David J. Beebe, Edmond W. K. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab Chip 15, 2364-2378, 2015.
[65]P.C. Chen, C.W. Pan, W.C. Lee, and K.M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate", The International Journal of Advanced Manufacturing Technology, 71, 1623-1630, 2014.
[66]M.L. Huperta, W.J. Guya, S.D. Llopisa, C. Situmaa, S. Rania, D.E. Nikitopoulosa, S. A. Soper,"High-Precision Micromilling for Low-Cost Fabrication of Metal Mold Masters", Proc. of SPIE, 6112, 61120B1-61120B 12, 2005.
[67]鄭硯丰,毛細力驅動之血液分流晶片開發,國立台灣科技大學機械工程研究所,2015。
[68]Chi-Ho Yeung, Yusuf Altintas, Kaan Erkorkmaz, “Virtual CNC system. Part I. System architecture,” International Journal of Machine Tools& Manufacture 46, 1107-1123, 2006.
[69]S. Ehsan Layegh K. , I. Enes Yigit, Ismail Lazouglu, “Analysis of tool orientation for 5-axis ball-end milling of flexible parts,” CIRP-Annals- Manufacturing Technology 64, 97-100, 2015.
[70]梁慶,廖前行,劉正陽,基於Pro/E及Mastercam的模具設計與製造,北京理工大學出版社,2012。
[71]K. Zhonga, Y. Gaoa, F. Li, Z. Zhang, N. Luob, “Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique,” Optik, 125, pp. 2413-2416, 2014.
[72]C. W. Beh, W. Zhouab, T. H. Wang, “PDMS-glass bonding using grafted polymeric adhesive-alternative process flow for compatibility with patterned biological molecules,” Lab Chip, 12, pp. 4120-4127, 2012.
[73]張義彬,利用可調式微流體晶片開發微透鏡陣列,國立台灣科技大學機械工程研究所,2016。
[74]L. Tang, M. S. Sheu, T. Chu, Y. H. Huang, “Anti-inflammatory properties of triblock siloxane copolymer-blended materials,’’ Biomaterials, 20, pp. 1365-1370, 1999.
[75]W. M. Choi and O. O. Park, “A soft-imprint technique for direst fabrication of submicron scale patterns using a surface-modified PDMS mold,” Microelectron Engineering, 70, pp. 131-136, 2003.
[76]D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,’’ Microelectronic Engineering, 2007.
[77]N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, H. Kurz, “Improved mold fabrication for the definition of high quality nanopatterns by soft UV-Nanoiprint lithography using diluted PDMS material,”Microelectronic Engineering, 84, pp. 904-908, 2007.
[78]K. Aran, L. A. Sasso, N. Kamdar and J. D. Zahn, “Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices,’’The Royal Society of Chemistry Lab Chip, 10, pp. 548-552, 2010.
[79]H.-T. Hsieh, V. Lin, J.-L. Hsieh, G. D. J. Su, “Design and fabrication of long focal length microlens arrays,’’Optics Communications 284 , 2011.
[80]許淑喬,微透鏡翻製製製作研究與分析,明新科技大學化學工程與材料科技研究所,2011。
[81]L. Tang and N. Y. Lee, "A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature", Lab Chip, 10, 1274–1280,2010.
[82]P. N. Nge, C. I. Rogers, A. T. Woolley, “Advances in Microfluidic Materials, Function, Interation and applications,” Chem Rev, 113(4), pp. 2550-25583, 2013.
[83]T. Chia-Wen, D. Don L, “Bonding of Thermoplastic polymer microfluidics,” Microfluidic and Nanofluids, 6(1), pp. 1-16, 2009.
[84]P. C. Chen, Y. M. Liu, H. C. Chou, “An adhesive bonding method with microfabricating micro pillars prevent clogging in a microchannel,” J. Micromech. Microeng, 26(4), P. 045003, 2016.
[85]R. Hoogenboom, C. R. Becer, C. Guerrero-Sanchez, S. Hoeppener, U. S. Schubert, “Solubility and thermoresponsiveness of PMMA in alcohol-water solvent mixtures,” Australian journal of chemistry, 63(8), pp.1173-1178, 2010.
[86]H. Tanisugi, H. Ohnuma, T. Kotaka, “Swelling Behavior of Bisphenol-A Polycarbonate-Polyoxyethylene Multiblock Copolymers in Ethanol/ Water Mixtures,” Polymer Journal. 16(8), pp. 633-640, 1984.
[87]Duong Huyen Lynh,應用於熱塑性材料微流體晶片之新型溶劑黏合方法,國立台灣科技大學機械工程研究所,2016。
[88]C. Zhang, D. Xing, and Y. Li, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends," Biotechnol Adv, vol. 25, pp. 483-514, Sep-Oct 2007.