參考文獻
1. 新北市政府新建工程處 (2014) 新北市側環快南端銜接點延伸至五重溪段工程順向坡監測工作總報告書。
2. 地質雲(2017)取自http://www.geologycloud.tw/map/liquefaction/zh-tw。
3. 中國土木水利工程學會(1994)地錨設計和施工準則暨解說(第三版)。
4. 交通部(2015)公路邊坡工程設計規範。
5. 交通部(2015)公路邊坡大地工程設施維護與管理規範。
6. 趙衛君,「應用高斯過程建立分階式山區道路邊坡崩塌預測模式之研究-以阿里山公路為例」,國立台灣科技大學,2005。
7. 李建宗,「應用高斯過程建立台北縣山區道路-邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文,2006。
8. 李鈞宇,「應用高斯過程建立新中橫公路邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文,2006。
9. 交通部運輸研究所(2006)坡地災害緊急搶修與復建整合技術研究(1/2)。
10. 蔡岱佑,「台灣中部山區道路邊坡崩塌潛勢之比較分析」,國立臺灣科技大學營建工程系碩士論文,2007。11. 胡毓港,「阿里山山區道路邊坡崩塌規模評估與特性探討」,國立臺灣科技大學營建工程系碩士論文,2007。12. 陳冠霖,「演化式風險偏好支持向量機推論模式(ERP-SIM)之研究-以道路邊坡坍塌預測為例」,國立臺灣科技大學營建工程系碩士論文,2009。13. 交通部運輸研究所(2009)山區道路坡地災害防治技術整合研究(2/4)。
14. 胡逸舟,「降雨引致山區道路邊坡崩塌潛勢之研究-以阿里山公路為例,國立臺灣科技大學營建工程系博士論文,2011。
15. A.-K. Jain, J. Mao and K.-M. Mohiuddin, Artificial neural networks: a tutorial, Computer, vol. 29(3), pp. 31-44, 1996.
16. Cortes and V. Vapnik, “Support-vector network”, Machine Learning, Vol.20, No.3, pp.273-297, 1995.
17. Suykens, J., et al., 2002, Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd.
18. Min-Yuan Cheng and Nhat-Duc Hoang, 2012, Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech.
19. Min-Yuan Cheng and Nhat-Duc Hoang, “Estimating Compressive Strength of Rubberized Concrete Using Evolutionary Least Squares Support Vector Machine”,Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech,2012.
20. Min-Yuan Cheng and Doddy Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, Vol. 139, pp. 98-112, 2014.
21. G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering.
22. M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036.
23. D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145.
24. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308.
25. S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15.
26. H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297.
27. E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861.
28. A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360.
29. Min-Yuan Cheng, Doddy Prayogo and Yu-Wei Wu, (in preparation), “Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model”, Construction and Building Materials.
30. Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo.
31. 高秋振、何樹根、林庚鈴、簡進龍、侯仁傑、溫廷睿,坡地安全檢查與維護,技師期刊第67期,2014。32. 林裕益,臺北市人工邊坡風險管理機制之研究,工程環境會刊第29期,2012。