1. 公共工程委員會,公共工程飛灰混凝土使用手冊,台北市,1999。
2. 台塑石化公司,「副產品「混合石膏及副產飛灰」再利用技術及應用推廣規範評估報告」,2005。
3. 田剛、王紅梅、張凡,「脫硫灰的綜合利用」,能源環境保護學刊,第17卷,第6期,第49-53頁,2003。
4. 吳宗翰,鹼激發爐灰砂漿鋼筋握裹性質研究,營建工程所,國立台灣科技大學,2014。
5. 宋遠明、錢覺時、劉景相、王波、王志娟,「SO3對固硫渣膠凝系統水化及性能的影響」,建築材料學報,第16期,第4期,第688-694頁,2013。
6. 李祐帆,鹼激發爐石-轉爐石膠結材物理性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2010。7. 李婉禎,石化與煉鋼產業廢棄物作為控制性低強度材料膠結材和填充材之研究,營建工程所,國立台灣科技大學,2015
8. 官志恆,鹼活化液模數比及劑量對爐石混凝土性質影響之研究,河海工程學系,國立臺灣海洋大學,基隆市,2011。
9. 邱友梅,無鹼激發廢玻璃膠結材之研究,土木工程學系碩博士班,國立成功大學,台南市,2012。10. 邱顯楠,含偏高嶺土與稻殼灰鹼激發膠結材及砂漿之防火性能和工程性質探討,營建工程系,國立臺灣科技大學,台北市,2012。
11. 夏艷晴、嚴雲、胡志華,「固流化免蒸壓加氣混凝土性能影響因素的研究」,武漢理工大學學報,第34卷,第3期,第25~30頁,2012。
12. 涂明和,以氧化鈣與三氧化二鋁成份迴歸分析探討鹼激發爐灰砂漿工程性質之影響,營建工程所,國立台灣科技大學,2015。
13. 張士晉,掺CFB副產石灰之鹼激發飛灰膠凝材料工程性質之研究,土木工程學系碩博士班,國立成功大學,台南市,2009。14. 張峻闔,碩士論文,「CFBC飛灰作為鹼激發劑與標準之符合度及混凝土性質研究」,國立交通大學土木研究所,2013。
15. 曹德光、蘇達根、楊占印、宋國勝,偏高嶺石的微觀結構與鍵合反應能力,礦物學報,24 (2004) 366-372。
16. 盛廣宏、陳明、程麟、方恆林,「硬石膏對硅酸鹽水泥性的影響」,水泥工程,第5期,第8~11頁,2004。
17. 許偉哲,TFT-LCD廢玻璃鹼激發膠結材之物理性質,土木工程學系碩博士班,國立成功大學,台南市,2009。18. 許皓翔,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,環境工程學系碩士班,國立宜蘭大學,宜蘭縣,2012。19. 陳致仰,飛灰含量對無水泥生態混凝土耐久性質之效應,營建工程所,國立台灣科技大學,2016。
20. 黃兆龍,卜作嵐混凝土使用手冊,財團法人中興工程顧問社,台北市,2007。
21. 黃兆龍,高爐熟料在水泥上之利用,現代混凝土技術研討會,台灣營建研究中心,第162-177頁,1984。
22. 黃兆龍,混凝土性質與行為,詹氏書局,台北,1997。
23. 黃俊傑,鹼激發爐灰混凝土新拌性質之研究,營建工程所,國立台灣科技大學,2016。
24. 黃從源,三相生態混凝土工程性質之研究,營建工程所,國立台灣科技大學,2014。
25. 廖佳慶,鹼礦渣水泥與混凝土化學收縮和乾縮行為研究,重慶大學材料科學與工程系,重慶,2007。
26. 劉畊甫,焚化底碴鹼激發效益之評估,土木工程學研究所,臺灣大學,台北市,2010。
27. 蔡宗和,含轉爐石及飛灰之鹼激發爐石膠結材,土木工程學系碩博士班,國立成功大學,台南市,2011。28. 賴琇瑩,鹼激發廢玻璃膠結材之常溫配比研究,土木工程學系碩博士班,國立成功大學,台南市,2010。29. 錢覺時、鄭洪傳、王智、宋遠明、楊娟,「硫化床燃煤固硫灰渣活性評定方法」,煤炭學報,第31卷,第4期,第506-510頁,2006。
30. 謝明蒲,廢玻璃鹼激發膠結材之吸水性能研究,土木工程學系碩博士班,國立成功大學,台南市,2012。31. Anthony, J., and L. Jia, Y. Wu, “CFBC ash hydration studies,” Fuel, Vol.84, pp. 1393-1397 (2005).
32. Aydın, S., B. Baradan, Effect of activator type and content on properties of alkali-activated slag mortars, Composites Part B: Engineering, 57 (2014) 166-172.
33. Bernal, S.A., Bernal, J.L. Provis, B. Walkley, R. San Nicolas, J.D. Gehman, D.G. Brice, A.R. Kilcullen, P. Duxson, and J.S.J. van Deventer, Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation, Cement and Concrete Research, 53 (2013) 127-144.
34. Caijun, S.L.,and Yinyu, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cement and Concrete Research, 19 (1989) 527-533.
35. Chen C.T., H.A, Nguyen, T.P. Chang, T.R. Yang, and T.D Nguyen, Performance and microstructural examination on composition of hardened paste with no-cement SFC binder, Construction and Building Materials, 76 (2015) 264-272.
36. Chi,M., R. Huang, Binding mechanism and properties of alkali-activated fly ash/slag mortars, Construction and Building Materials, 40 (2013) 291-298.
37. Davidovits, J., “Geoplolymer:man-made rock gel synthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91-139 (1994).
38. Duxson, P., and J.L. Provis, Designing precursors for geopolymer cements, Journal of the American Ceramic Society, 91 (2008) 3864-3869.
39. Duxson,P., A. Fernández-Jiménez, J.L. Provis, and G.C. Lukey, A. Palomo, J.S.J. Van Deventer, Geopolymer technology: The current state of the art, J Mater Sci, 42 (2007) 2917-2933.
40. Faimon, J., Oscillatory silicon and aluminum aqueous concentrations during experimental aluminosilicate weathering, Geochimica et Cosmochimica Acta, 60 (1996) 2901-2907.
41. Fernández-Jiménez,A., A. Palomo, I. Sobrados, and J. Sanz, The role played by the reactive alumina content in the alkaline activation of fly ashes, Microporous and Mesoporous Materials, 91 (2006) 111-119.
42. Fu, X., Q. Li, and J. Zhai, “The physical–chemical characterization of mechanically-treated CFBC fly ash,” Cement & Concrete Composites, Vol.30(3), pp. 220-226 (2008).
43. Goodman, and Richard E. Introduction to rock mechanics. Vol. 2. New York: Wiley, 1989
44. Hamilton, J.P., S.L. Brantley, C.G. Pantano, L.J. Criscenti, and J.D. Kubicki, Dissolution of nepheline, jadeite and albite glasses: toward better models for aluminosilicate dissolution, Geochimica et Cosmochimica Acta, 65 (2001) 3683-3702
45. Havlica, J., I. Odler, J. Brandštetr, R. Mikulikova, and D. Walther, “Cementitious materials based on fluidised bed coal combustion ashes,,Vol.16(2), pp. 61-67 (2010)
46. Kumar, S., R. Kumar, and S.P. Mehrotra, Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer, J Mater Sci, 45 (2010) 607-615.
47. Lee, C. Y., H. K. Lee, and K. M. Lee, “Strength and Microstructural Characteristics of Chemically Activated Fly Ash–Cement Systems,” Cement and Concrete Research, Vol. 33(3), pp. 425-431 (2003).
48. Li, X. G., Q. B. Chen, B. G. Ma, J. Huang, S. W. J, and B. Wu, “Utilization of modified CFBC desulfurization ash as an admixture in blende cements: Physico-mechanical and hydration characteristics,” Fuel, Vol. 102, pp. 674-680 (2012).
49. Li, Z., and S. Liu, Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer, Journal of Materials in Civil Engineering, 19 (2007) 470-474.
50. Malhotra, and V.M.M.P.K. High-performance, high-volume fly ash concrete : materials, mixture proportioning, properties, construction practice, and case histories, Supplementary Cementing Materials for Sustainable Development Inc., Ottawa, 2005.
51. Mozgawa, W., and J. Deja, Spectroscopic studies of alkaline activated slag geopolymers, Journal of Molecular Structure, 924–926 (2009) 434-441.
52. N.K. Lee, and H.K. Lee, Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature, Construction and Building Materials, 47 (2013) 1201-1209.
53. Nath, S.K., and S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer, Construction and Building Materials, 38 (2013) 924-930.
54. Nguyen, H.A, T.P. Chang, J.Y. Shih, C.T. Chen, and T.D Nguyen, Sulfate resistance of low energy SFC no-cement mortar, Construction and Building Materials, 102 (2016) 239–243.
55. Nguyen, H.A., T.P. Chang., J.Y., Shih.,. Chun-Tao,Chen., and Tien-Dung,Nguyen, Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder, Construction and Building Materials, 106 (2016) 670-677.
56. Noushini, A, F. Aslani, and A.Castel, Raymond IanGilbert, BrianUy, and StephenFoster, Compressive stress-strain model for low-calcium fly ash-based geopolymer and heat-cured Portland cement concrete, 73 (2016) 136-146.
57. Poon, C. S., S. C. Kou, and Z. S., Lin, “Activation of fly ash/cement systems using calcium sulfate anhydrite (CaSO4),” Cement and Concrete Research, Vol. 31(6), pp.873-881 (2001).
58. Puertas, F., S. Martı́nez-Ramı́rez, S. Alonso, T. Vázquez, Alkali-activated fly ash/slag cements: Strength behaviour and hydration products, Cement and Concrete Research, 30 (2000) 1625-1632.
59. Rangan, B.V.H.D., Development and properties of low calcium fly ash based geopolymer concrete, Faculty of Engineering, Curtins University of Technology, Perth, Australia, 2005.
60. Sheng, G., J. Zhai, Q. Li, and F. Li, “Utilization of Fly Ash coming from a CFBC Boiler Co-Firing Coal and Petroleum Coke in Portland Cement,” Fuel, Vol.86(16), pp. 2625-2631 (2007).
61. Sheng, G., Q. Li, and J. Zhai, “Investigation on the hydration of CFBC fly ash,” Fuel, 98, pp61-66 (2012).
62. Sheng, G., Q. Li, and J. Zhai, and F. Li, “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke,” Cement and Concrete Research, Vol.37(6), pp.871-876 (2007).
63. Shi, C., P. V. Krivenko, and D. Roy, “Alkali-activated Cement and Concrete,” London and New York: Taylor and Francis (2006).
64. Sievert, T., A. Wolter, and N. B. Singh, “Hydration of anhydrite of gypsum (CaSO4.II) in a ball mill,” Cement and Concrete Research,” Vol. 35, pp. 623-630 (2005).
65. Taylor, M.T.C., and Gielen, D., Energy efficiency and CO2 emissions from the global cement industry, Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, International Energy Agency, Paris, 2006.
66. Thomas,Robert J., and Sulapha Peethamparan, Alkali-activated concrete: Engineering properties and stress–strain behavior, Construction and Building Materials, 93 (2015) 49-56.
67. Tzouvalas, G., N. Dermatas, and S. Tsimas, “Alternative calcium sulfate-bearing materials as cement retarders Part I. Anhydrite,” Cement and Concrete Research,” Vol. 34, pp. 2113-2118 (2004).
68. Venu, T.D., and Gunneswara Rao, Tie-confinement aspects of fly ash-GGBS based geopolymer concrete short columns, Construction and Building, 151 (2017) 28-35.
69. Vutukuri, V. S., R. D. Lama, and S. S. Saluja. "Handbook on Mechanical Properties of Rocks: Testing Techniques and Results, vol. I. Series on Rock and Soil Mechanics vol. 2, No. 1." Trans Tech Publications, Clausthal, Germany, ISBN 0-87849-010-8 (1974).
70. Wan, H., Z. Shui, and Z. Lin, Analysis of geometric characteristics of GGBS particles and their influences on cement properties, Cement and Concrete Research, 34 (2004) 133-137.
71. Wang, P.Z., R. Trettin, and V. Rudert, Effect of fineness and particle size distribution of granulated blast-furnace slag on the hydraulic reactivity in cement systems, Advances in Cement Research, 17 (2005) 161-166.
72. Wang, S.-D., and K.L. Scrivener, Hydration products of alkali activated slag cement, Cement and Concrete Research, 25 (1995) 561-571.
73. Wang, S.-D., K.L. Scrivener, and P.L. Pratt, Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24 (1994) 1033-1043.
74. Wang,S.-D., K.L. Scrivener, 29Si and 27Al NMR study of alkali-activated slag, Cement and Concrete Research, 33 (2003) 769-774.
75. Xia, Y., Y. Yan, “Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics,”Construction and Materials, Vol. 47, pp. 1461-1467(2013).
76. Yip, C.K. G.C. Lukey, and J.S.J. van Deventer, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cement and Concrete Research, 35 (2005) 1688-1697.
77. Yip, C.K., G.C. Lukey, and J.L. Provis, J.S.J. van Deventer, Effect of calcium silicate sources on geopolymerisation, Cement and Concrete Research, 38 (2008) 554-564.
78. Zajac M., A. Rossberg, G. L. Saout, and B. Lothenbach, “Influence of limestone and anhydrite on the hydration of Portland”, Cement and Concrete Composites, Vol. 46, pp. 99-108 (2014).