[1] The Elements of Statistical Learning, Technometrics 45 (3) (2003) 267-268.
[2] T. Al-Saba, I. El-Amin, Artificial neural networks as applied to long-term demand forecasting, Artificial Intelligence in Engineering 13 (2) (1999) 189-197.
[3] E. Arcaklioğlu, A. Erişen, R. Yilmaz, Artificial neural network analysis of heat pumps using refrigerant mixtures, Energy Conversion and Management 45 (11–12) (2004) 1917-1929.
[4] M.B. Bailey, The Design and Viability of a Probabilistic Fault Detection and Diagnosis Method for Vapor Compression Cycle Equipment, University of Colorado, 1998.
[5] H. Bechtler, M.W. Browne, P.K. Bansal, V. Kecman, New approach to dynamic modelling of vapour-compression liquid chillers: artificial neural networks, Applied Thermal Engineering 21 (9) (2001) 941-953.
[6] M. Brown, C. Barrington-Leigh, Z. Brown †, Kernel regression for real-time building energy analysis, Journal of Building Performance Simulation 5 (4) (2012) 263-276.
[7] R. Chakraborty, A. Maitra, Retrieval of atmospheric properties with radiometric measurements using neural network, Atmospheric Research 181 (2016) 124-132.
[8] J.-S. Chou, Y.-C. Hsu, L.-T. Lin, Smart meter monitoring and data mining techniques for predicting refrigeration system performance, Expert Systems with Applications 41 (5) (2014) 2144-2156.
[9] J.-S. Chou, A.S. Telaga, W.K. Chong, G.E. Gibson, Early-warning application for real-time detection of energy consumption anomalies in buildings, Journal of Cleaner Production 149 (2017) 711-722.
[10] M.C. Comstock, B. Chen, J.E. Braun, R. Bernhard, P.U.S.o.M. Engineering, R.W.H. Laboratories, R. American Society of Heating, A.-C. Engineers, Literature Review for Application of Fault Detection and Diagnostic Methods to Vapor Compression Cooling Equipment, Purdue University, 1999.
[11] M. Dabiri, M. Ghafouri, H.R.R. Raftar, T. Björk, Neural network-based assessment of the stress concentration factor in a T-welded joint, Journal of Constructional Steel Research 128 (2017) 567-578.
[12] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From data mining to knowledge discovery: an overview, in: M.F. Usama, P.-S. Gregory, S. Padhraic, U. Ramasamy (Eds.), Advances in knowledge discovery and data mining, American Association for Artificial Intelligence, 1996, pp. 1-34.
[13] R. Ghedamsi, N. Settou, A. Gouareh, A. Khamouli, N. Saifi, B. Recioui, B. Dokkar, Modeling and forecasting energy consumption for residential buildings in Algeria using bottom-up approach, Energy and Buildings 121 (2016) 309-317.
[14] M. Goodarzi, R. Jensen, Y. Vander Heyden, QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions, Journal of Chromatography B 910 (2012) 84-94.
[15] H. Hahn, S. Meyer-Nieberg, S. Pickl, Electric load forecasting methods: Tools for decision making, European Journal of Operational Research 199 (3) (2009) 902-907.
[16] G.B. Humphrey, H.R. Maier, W. Wu, N.J. Mount, G.C. Dandy, R.J. Abrahart, C.W. Dawson, Improved validation framework and R-package for artificial neural network models, Environmental Modelling & Software 92 (2017) 82-106.
[17] G.F. Hundy, A.R. Trott, T.C. Welch, Chapter 2 - The Refrigeration Cycle, Refrigeration, Air Conditioning and Heat Pumps (Fifth Edition), Butterworth-Heinemann, 2016, pp. 19-39.
[18] R. Isermann, Process fault detection based on modeling and estimation methods—A survey, Automatica 20 (4) (1984) 387-404.
[19] R.R. Kallu, E.R. Keffeler, R.J. Watters, A. Agharazi, Development of a multivariate empirical model for predicting weak rock mass modulus, International Journal of Mining Science and Technology 25 (4) (2015) 545-552.
[20] W.-K. Kao, H.-M. Chen, J.-S. Chou, Aseismic ability estimation of school building using predictive data mining models, Expert Systems with Applications 38 (8) (2011) 10252-10263.
[21] D.-S. Kapetanakis, E. Mangina, E.H. Ridouane, K. Kouramas, D. Finn, Selection of Input Variables for a Thermal Load Prediction Model, Energy Procedia 78 (2015) 3001-3006.
[22] M.-T. Ke, C.-H. Yeh, C.-J. Su, Cloud computing platform for real-time measurement and verification of energy performance, Applied Energy 188 (2017) 497-507.
[23] T.R. Kiran, S.P.S. Rajput, An effectiveness model for an indirect evaporative cooling (IEC) system: Comparison of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach, Applied Soft Computing 11 (4) (2011) 3525-3533.
[24] D. Kolokotsa, D. Rovas, E. Kosmatopoulos, K. Kalaitzakis, A roadmap towards intelligent net zero- and positive-energy buildings, Solar Energy 85 (12) (2011) 3067-3084.
[25] E.U. Küçüksille, R. Selbaş, A. Şencan, Data mining techniques for thermophysical properties of refrigerants, Energy Conversion and Management 50 (2) (2009) 399-412.
[26] D. Liu, Y. Yuan, S. Liao, Artificial neural network vs. nonlinear regression for gold content estimation in pyrometallurgy, Expert Systems with Applications 36 (7) (2009) 10397-10400.
[27] P. Mandal, T. Senjyu, T. Funabashi, Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market, Energy Conversion and Management 47 (15–16) (2006) 2128-2142.
[28] M. Molina-Solana, M. Ros, M.D. Ruiz, J. Gómez-Romero, M.J. Martin-Bautista, Data science for building energy management: A review, Renewable and Sustainable Energy Reviews 70 (2017) 598-609.
[29] T. Orenstein, Z. Kohavi, I. Pomeranz, An optimal algorithm for cycle breaking in directed graphs, Journal of Electronic Testing 7 (1) (1995) 71-81.
[30] B. Pitt, Applications of data mining techniques to electric load profiling, Dept. Elect. Electron. Eng (2000) 1-197.
[31] M.R. Rezaee, A. Jafari, E. Kazemzadeh, Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks, Journal of Geophysics and Engineering 3 (4) (2006) 370.
[32] T.M. Rossi, J.E. Braun, A statistical, rule-based fault detection and diagnostic method for vapor compression air conditioners, HVAC&R Research 3 (1) (1997) 19-37.
[33] A.Ş. Şahin, Performance analysis of single-stage refrigeration system with internal heat exchanger using neural network and neuro-fuzzy, Renewable Energy 36 (10) (2011) 2747-2752.
[34] D.J. Swider, A comparison of empirically based steady-state models for vapor-compression liquid chillers, Applied Thermal Engineering 23 (5) (2003) 539-556.
[35] M.B. Swift, Comparison of Confidence Intervals for a Poisson Mean – Further Considerations, Communications in Statistics - Theory and Methods 38 (5) (2009) 748-759.
[36] R. Timofeev, Classification and regression trees (CART) theory and applications, Humboldt University, Berlin, 2004.
[37] P.M. Van Every, M. Rodriguez, C.B. Jones, A.A. Mammoli, M. Martínez-Ramón, Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models, Energy and Buildings 149 (2017) 216-224.
[38] V.N. Vapnik, V. Vapnik, Statistical learning theory, Wiley New York, 1998.
[39] I.-H. Yang, M.-S. Yeo, K.-W. Kim, Application of artificial neural network to predict the optimal start time for heating system in building, Energy Conversion and Management 44 (17) (2003) 2791-2809.
[40] A. Zendehboudi, X. Li, B. Wang, Utilization of ANN and ANFIS models to predict variable speed scroll compressor with vapor injection, International Journal of Refrigeration 74 (2017) 475-487.
[41] 唐文祥, 吳東錦, 江昭佑, 陳煥, 應用於需量反應之家庭能源管理系統, 電腦與通訊 (153) (2013) 129-137.[42] 徐筱琪, 廖建順, 我國變頻空調機之SEER發展現況介紹, 工研院能源與環境研究所冷凍空調&熱交換 (83) (2008) 1-8.
[43] 李玉生, 林憲德, 呂罡銘, 王育忠, 黃光佑, 建築生命週期二氧化碳排放量評估之研究(二)-建築空調設備二氧化碳排放量解析, in: 內政部建築研究所 (Ed.), 2007, p. 78.
[44] 經濟部能源局, 2016年非生產性質行業能源查核年報, 2017, p. 19