[1]http://www.oecd-ilibrary.org/economics/oecd-factbook-2010/world-electricity-generation-bysource-of-energy-figure_factbook-2010-graph119-en. (2011).
[2]N. Stern, The economics of climate change, (2007).
[3]G. Boyle, A. Gary, Renewable energy, Oxford University Press. (2004).
[4]M. McGehee, Printing solar cells for greener energy, Stanford University. (2012).
[5]https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89
[6]N.S. Lewis, Basic research needs for solar energy utilization, US Department of Energy. (2005).
https://science.energy.gov/~/media/bes/pdf/reports/files/Basic_Research_Needs_for_Solar_Energy_Utilization_rpt.pdf
[7]K.K. Goyal, Renewable energy. (2009).
[8]L. Fraas, L. Partain, Solar cells: a brief history and introduction, solar cells and their applications, 2nd Ed. (2010).
[9]2011 年經濟部技術處 產業技術白皮書
[10]Photovoltaic milestones: US Energy Information Administration: http://www.eia.gov/cneaf/solar.renewables/renewable.energy.annual/backgrnd/chap11i.htm.
[11]S.R. Wenham, M.A. Green, M.E. Watt, R. Corkish, Applied photovoltaics, Earthscan. 2nd Ed. (2007).
[12]H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics. 11 (2009) 649-653.
[13]A. Kojima, K. Teshima, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
[14]J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (2013) 316-319.
[15]H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Photovoltaics, interface engineering of highly efficient perovskite solar cells, Science. 345 (2014) 542-546.
[16]http://cdn.phys.org/newman/gfx/news/hires/2016/1-claimsforsol.jpg
[17]G.P. Smestad and M. Grätzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, J. Chem. Educ. 75 (1998) 752-756.
[18]M. Grätze, Review: dye-sensitized solar cells, J. Photochem. Photobiol. 4 (2003) 145-153.
[19]郭政良,「染料敏化太陽電池之建材研究」,國立高雄應用科技大學應用工程科學研究所碩士論文,第7-15頁(2010)。[20]A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science. 334 (2011) 629-634.
[21]C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185.
[22]黃建榮,「有機太陽能電池技術發展」,光連雙月刊2014年5月•No.111,第55-57頁。
[23] http://pv.energytrend.com.tw/news/20140327-8086.html.
[24]R.P. Singh, O.S. Kushwaha, Polymer solar cells: an overview, Macromol. Symp. 327 (2013) 128-149.
[25]T.J. Savenije, Organic solar cells, chapter 8. exciton solar cells, Delft University of Technology. 8.1-8.15. http://aerostudents.com/files/solarCells/CH8OrganicSolarCells.pdf
[26]黃義雄,「含4,5-雙氰基咪唑之小分子及其光伏打電池之應用」,國立中央大學化學研究所碩士論文,第12頁(2000)。[27]B. Gregg, Comparing organic to inorganic photovoltaic cells: theory, experiment, and simulation, J Appl Phys. 93 (2003) 3605-3614.
[28]S.R. Scully, M.D. McGehee, Effects of optical interference and energy transfer on exciton diffusion length measurements in organic semiconductors, J. Appl. Phys. 100 (2006) 034907-034907-5.
[29]D.I.K. Petritsch, Organic solar cell architectures, PhD thesis. Technisch-Naturwissenschaftliche Fakultぴat der Technischen Universitぴat Graz (Austria) (2000).
https://solarpassion.com/solar_thesis/thesis_klaus.pdf
[30]M.N, Jean, Organic photovoltaic materials and devices. CR Phys. 3 (2002) 523-542.
[31]H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview, J Mater Res. 19 (2004) 1924-1945.
[32]B.A. Gregg, The photoconversion mechanism of excitonic solar cells, Mrs Bulletin. 30 (2005) 20-22.
[33]C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett. 80 (2000) 1288-1290.
[34]http://web.it.nctu.edu.tw/~jtchen/research/c-research-opv.htm
[35]https://en.wikipedia.org/wiki/Air_mass_(solar_energy)
[36]http://www.greenrhinoenergy.com/solar/radiation/spectra.php
[37]https://www.newport.com/t/introduction-to-solar-radiation
[38]http://www.pveducation.org/pvcdrom/appendices/standard-solar-spectra
[39]J.J.M. Halls, A.C. Arias, D. MacKenzie, W.S. Wu, K. Inbasekaran, E.P. Woo, R.H. Friend, Photodiodes based on polyfluorene composites: influence of morphology, Adv. Mater. 12 (2000) 498-502.
[40]R. Janssen, Introduction to polymer solar cells. (3Y280) Departments of Chemical Engineering & Chemistry and Applied Physic Eindhoven University of Technology, the Netherlands.
[41]J.D. Servaites, M.A. Ratner, T.J. Marks, Organic solar cells: a new look at traditional models, Energy Environ. Sci. 4 (2011) 4410-4422.
[42]S Karg, W Riess, V. Dyakonov, M. Schwoerer, Electrical and optical characterization of poly (phenylene-vinylene) light emitting diodes, Synth. Met. 54 (1993) 1-3.
[43]S. Rajaputra, S. Vallurupalli, V.P. Singh, Schottky diode solar cells on electrodeposited copper phthalocyanine films, Sol. Energy Mater. Sol. Cells. 93 (2009) 60-64.
[44]C.Y. Kwong, A.B. Djurišiĉ, P.C. Chui, L.S.M. Lam, W.K. Chan, Improvement of the efficiency of phthalocyanine organic schottky solar cells with ITO electrode treatment, Appl. Phys. A. 77 (2003) 555-560.
[45]P.E Shaw, A. Ruseckas, I.D.W. Samuel, Exciton diffusion measurements in poly (3-hexylthiophene), Adv Mater. 20 (2008) 3516-3520.
[46]J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, 4.2% efficient organic photovoltaic cells with low series resistances, Appl. Phys. Lett. 84 (2004) 3013-3015.
[47]P. Peumans, S.R. Forrest, Very-high-efficiency double- heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett. 79 (2001) 126-128.
[48]S. Yoo, B. Domercq, B. Kippelen, Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60, J. Appl. Phys. 97 (2005) 103706-103706-9.
[49]W. J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition, Appl. Phys. Lett. 90 (2007) 253511-253511-3.
[50]J.Yang, T.Q. Nguyen, Effects of thin film processing on pentacene/C60 bilayer solar cell performance, Org. Electron. 8 (2007) 566-574.
[51]P. Sullivan, T. Jones, Pentacene/fullerene (C60) heterojunction solar cells: device performance and degradation mechanisms, Org. Electron. 9 (2008) 656-660.
[52]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 2582 (1992) 1474-1476.
[53]J.K.J. van Duren, X. Yang, J. Loos, C.W.T. Bulle-Lieuwma, A.B. Sieval, J.C. Hummelen, R.A.J. Janssen, Relating the morphology of poly (p-phenylene vinylene)/methanofullerene blends to solar-cell performance, Adv. Funct. Mater. 14 (2004) 425-434.
[54]H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells, Adv. Funct. Mater. 14 (2004) 1005-1011.
[55]C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Adv. Funct. Mater. 11 (2001) 374-380.
[56]D. Gebeyehua, C.J. Brabeca, F. Padingerb, T. Fromherzb, J.C. Hummelenc, D. Badtd, H. Schindlerd, N.S. Sariciftcia, The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes, Synth. Met. 118 (2001) 1-9.
[57]M. Girtan, M. Rusu, Role of ITO and PEDOT: PSS in stability/degradation of polymer: fullerene bulk heterojunctions solar cells, Sol. Energy Mater. Sol. Cells. 94 (2010) 446-450.
[58]D. Barrera, Y.J. Lee, J.W.P. Hsu, Influence of ZnO sol-gel electron transport layer processing on BHJ active layer morphology and OPV performance, Energy Mater. Sol. Cells. 125 (2014) 27-32.
[59]M.H. Chen, Y.C. Kuo, H.H. Lin, Y.P. Chao, M.S. Wong, Highly stable inverted organic photovoltaics using aluminum-doped zinc oxide as electron transport layers, J. Power Sources. 275 (2015) 274-278.
[60]A. Hadipour, B. de Boer, J. Wildeman, F.B. Kooistra, J.C. Hummelen, M.G.R. Turbiez, M.M. Wienk, R.A.J. Janssen, P.W.M. Blom, Solution-processed organic tandem solar cell, Adv. Funct. Mater. 16 (2006) 1897-1903.
[61]T. Ameri, N. Li, C. J. Brabec, Highly efficient organic tandem solar cells: a follow up review, Energy Environ. Sci. 6 (2013) 2390-2413.
[62]Y. Yuan, J. Huang, G. Li, Intermediate layers in tandem organic solar cells, Green. 1 (2011) 65-80.
[63]J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science. 317 (2007) 222-225.
[64]D.W. Zhao, L. Ke, Y. Li, S.T. Tan, A.K.K. Kyaw, H.V. Demir, X.W. Sun, D.L. Carroll, G.Q. Lo, D.L. Kwong, Optimization of inverted tandem organic solar cells, Sol. Energy Mater. Sol. Cells. 95 (2011) 921-926.
[65]https://www.google.com.tw/search?q=inverted+tandem+organic+solar+cells&rlz=1C2ASUT_enTW610TW693&biw=1366&bih=700&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiw7czJwaLRAhVBGJQKHUfzA5sQ_AUIBigB#imgrc=hp9sxxioFBjn6M%3A
[66]A.K. Singh, Organic photovoltaics using novel pentacene derivatives, Northeastern University Boston, Massachusetts December. (2013).
[67]H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, J. Chem. Soc. Chem. Comm. 16 (1977) 578-580.
[68]https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000/advanced-chemistryprize2000.pdf
[69]https://zh.wikipedia.org/wiki/%E8%81%9A%E4%B9%99%E7%82%94
[70]N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science. 258 (1992) 1474-1476.
[71]蔡進譯,超高效率太陽電池, 物理雙月刊(廿七卷五期)2005 年 10 月
[72]M. Niggemann, M. Riede, A. Gombert, K. Leo, Light trapping in organic solar cells, phys. status solidi. 205 (2008) 2862-2874.
[73]P. Peumans, V. Bulovic, S.R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett. 76 (2000) 2650-2652.
[74]V.D. Mihailetchi, H. Xie, B. de Boer, L.J.A. Koster, P.W.M. Blom, Charge transport and photocurrent generation in poly (3-hexylthiophene):methanofullerene bulk-heterojunction solar cells, Adv. Funct. Mater. 16 (2006) 699-708.
[75]N.F. Mott, Note on the contact between a metal and an insulator or semiconductor, Proc. Camb. Phil. Soc. 34 (1938) 568-572.
[76]W. Monch, Metal-semiconductor contacts: electronic properties, Surf. Sci. 299 (1994) 928-944.
[77]L.M. Chen, Z. Xu, Z. Honga and Y. Yang, Interface investigation and engineering-achieving high performance polymer photovoltaic devices, J. Mater. Chem. 20 (2010) 2575-2598.
[78]N.C. Greenham, R.H. Friend, Semiconductor device physics of conjugated polymers, Solid State Phys. 49 (1995) 1-149.
[79]A. Kumar, S. Sista, Y. Yang, Dipole induced anomalous s-shape I-V curves in polymer solar cells, J. Appl. Phys. 105 (2009) 094512-094512-6.
[80]J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer, Adv. Mate. 18 (2006) 572-576.
[81]S. Wu, S. Han, Y. Zheng, J. Wang, pH-neutral PEDOT: PSS as hole injection layer in polymer light, Org. Electron. 12 (2011) 504-508.
[82]Y. Kim, A.M. Ballantyne, J. Nelson, D.D.C. Bradley, Effects of thickness and thermal annealing of the PEDOT: PSS layer on the performance of polymer solar cells, Org. Electron. 10 (2009) 205-209.
[83]Y.H. Kim, S.H. Lee, J. Noh, S.H. Han, Performance and stability of electroluminescent device with selfassembled layers of poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes, Thin Solid Films. 510 (2006) 305-310.
[84]V. Shrotriya, V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells, Appl. Phys. Lett. 88 (2006) 073508-073508-3.
[85]C. Zhang, H. You, Z. Lin, Y Hao, Inverted organic photovoltaic cells with solution-processed zinc oxide as electron collecting layer, Jpn. J. Appl. Phys. 50 (2011) 082302-082302-2.
[86]D.Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan, Y. Gao, The effect of molybdenum oxide interlayer on organic photovoltaic cells, Appl. Phys. Lett. 95 (2009) 093304-093304-3.
[87]M. Lögdlund, J.L. Brédas, Theoretical studies of the interaction between aluminum and poly (p‐phenylenevinylene) and derivatives, J. Chem. Phy. 101 (1994) 4357-4364.
[88]H. Antoniadis, B.R. Hsieh, M.A. Abkowitz, S.A. Jenekhe, M. Stolka, Photovoltaic and photoconductive properties of aluminum/poly (p-phenylene vinylene) interfaces, Synth. Met. 62 (1994) 265-271.
[89]D. Gupta, M. Bag, K.S. Narayan, Correlating reduced fill factor in polymer solar cells to contact effects, Appl. Phys. Lett. 92 (2008) 093301-093301-3.
[90]J. Huang, Z. Xu, Y. Yang, Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate, Adv. Funct. Mater. 17 (2007) 1966-1973.
[91]S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, N.R. Armstrong, Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode, J. Appl. Phy. 84 (1998) 2324-2327.
[92]L.S. Hung, C.W. Tang, M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode, Appl. Phys. Lett. 70 (1997) 152-154.
[93]A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S Yoshikawa, High performance polythiophene/fullerene bulk-heterojunction solar cell with a TiOx hole blocking layer, Appl. Phys. Lett. 90 (2007) 163517-163517-3.
[94]O. Yoshikawa, A. Hayakawa, T. Fujieda, K. Uehara, S. Yoshikawa, Enhanced efficiency and stability in P3HT: PCBM bulk heterojunction solar cell by using TiO2 hole blocking layer, Mater. Res. Soc. 965 (2006) 0965-S11-04.
[95]A. Manor, E.A. Katz, T. Thomas, K.C. Frederik, Enhancing functionality of ZnO hole blocking layer in organic photovoltaics, Sol. Energy Mater. Sol. Cells. 98 (2012) 491-493.
[96]S. K.Hau, H.L.Yip, N.S. Baek, J. Zou, K. O’Malley, K.Y. Jen, Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer, Appl. Phys. Lett. 92 (2008) 253301-253301-3.
[97]H.B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phy. 48 (1977) 4729-4733.
[98]H. Gommans, B. Verreet, B.P. Rand, R. Muller, J. Poortmans, P. Heremans, J. Genoe, On the role of bathocuproine in organic photovoltaic cells, Adv. Funct. Mater. 18 (2008) 3686-3691.
[99]C.Y. Kwong, A.B. Djurišiĉ, P.C. Chui, L.S.M. Lam, W.K. Chan, Improvement of the efficiency of phthalocyanine organic schottky solar cells with ITO electrode treatment, Appl. Phys. 77 (2003) 555-560.
[100]H. Hoppe, M. Niggemann, C. Winder, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells, Adv Funct. Mater. 14 (2004) 1005-1011.
[101]http://blog.sciencenet.cn/blog-60562-610180.html
[102]G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes, Adv Funct. Mater. 17 (2007) 1636-1644.
[103]G.H. Lu, L.G. Li, X.N. Yang, Achieving perpendicular alignment of rigid polythiophene backbones to the substrate by using solvent-vapor treatment, Adv. Mater. 19 (2007) 3594-3598.
[104]B. Meng, Z. Wang, W. Ma, Z. Xie, J. Liu, L. Wang, A cross-linkable donor polymer as the underlying layer to tune the active layer morphology of polymer solar cells, Adv. Funct. Mater. 26 (2015) 226-232.
[105]H.W. Liu, D.Y. Chang, W.Y. Chiu, S.P. Rwei, L. Wang, Fullerene bisadduct as an effective phase-separation inhibitor in preparing poly(3-hexylthiophene)-[6,6]-phenyl-C61-butyric acid methyl ester blends with highly stable morphology, J. Mater. Chem. 22 (2012) 15586-15591.
[106]F. Ouhib, M. Tomassetti, J. Manca, F. Piersimoni, D. Spoltore, S. Bertho, H. Moons, R. Lazzaroni, S. Desbief, C. Jerome, C. Detrembleur, Thermally stablebulk heterojunction solar cells based on cross-linkable acrylate-functionalizedpolythiophene diblock copolymers, Macromolecules. 46 (2013) 785-795.
[107]W. Greenbank, L. Hirsch, G. Wantz, S. Chambon, Interfacial thermal degradation in inverted organic solar cells, Appl. Phys. Lett. 107 (2015) 263301-263305.
[108]S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, G. Wantz, MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells, Materials. 5 (2012) 2521-2536.
[109]S.J. Lee, B.S. Kim, J.Y. Kim, M. Yusoff, J. Jang, Stable organic photovoltaic with PEDOT: PSS and MoOX mixture anode interfacial layer without encapsulation, Org. Electron. 19 (2015) 140-146.
[110]J.J. Jasieniak, J. Seifter, J. Jo, T. Mates, A.J. Heeger, A solution-processed MoOx anode iInterlayer for use within organic photovoltaic devices, Adv. Funct. Mater. 22 (2012) 2594-2605.
[111]M.F. Xu, L.S. Cui, X.Z. Zhu, C.H. Gao, X.B. Shi, Z.M. Jin, Z.K. Wang, L.S. Liao, Aqueous solution-processed MoO3 as an effective interfaciallayer in polymer/fullerene based organic solar cells, Org. Electron. 14 (2013) 657-664.
[112]S. Murase, Y. Yang, Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method, Adv. Mater. 24 (2012) 2459-2462.
[113]L.K. Jagadamma, H. Hu, T. Kim, G.N. Ndjawa, A.E. Mansour, A. E. Labban, J.C. Faria, R. Munir, D.H. Anjum, M.M. Lachlan, A. Amassian, Solution-processable MoOx nanocrystals enable highly efficient reflective and semitransparent polymer solar cells, Nano Energy. 28 (2016) 277-287.