|
1. Pontes, F. M.; Lee, E. J. H.; Leite, E. R.; Longo, E., High dielectric constant of SrTiO3 thin films prepared by chemical process. J. Mater. Sci. 2000, 35, 4783-4787. 2. Malghe, Y. S., Nanosized SrTiO3 powder from oxalate precursor microwave aided synthesis and thermal characterization. J. Therm. Anal. Calorim. 2010, 102, 831-836. 3. Voigts, F.; Damjanovi, T.; Borchardt, G.; Argirusis, C.; Maus-Friedrichs, W., Synthesis and characterization of strontium titanate nanoparticles as potential high temperature oxygen sensor material. J. Nanomater. 2006, 1-6. 4. Siddiqui, J.; Cagin, E.; Chen, D.; Phillips, J., ZnO thin-film transistors with polycrystalline (Ba, Sr) Ti O 3 gate insulators. Applied physics letters 2006, 88, (21), 212903. 5. Scott, J., High-dielectric constant thin films for dynamic random access memories (DRAM). Annual review of materials science 1998, 28, (1), 79-100. 6. Ueno, K.; Sakamoto, W.; Yogo, T.; Hirano, S.-i., Processing of novel strontium titanate-based thin-film varistors by chemical solution deposition. Journal of the American Ceramic Society 2003, 86, (1), 99-104. 7. Wu, Y. J.; Li, J.; Kimura, R.; Uekawa, N.; Kakegawa, K., Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics. J. Am. Ceram. Soc. 2005, 88, (12), 3327-3331. 8. Boccaccini, A. R.; Silva, D. D., Industrial developments in the field of optically transparent inorganic materials: a survey of recent patents. Recent Pat. Mater. Sci. 2008, 1, (1), 56-73. 9. Haertling, G. H.; Land, C., Hot‐pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 1971, 54, (1), 1-11. 10. Tschöpe, A., Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 2001, 139, (3–4), 267-280. 11. Klaytae, T.; Panthong, P.; Onjun, Y.; Thountom, S., The Effects of Sintering Temperature on the Physical and Electrical Properties of SrTiO3 Ceramics Prepared Via Sol-Gel Combustion Method. Ferroelectrics 2016, 491, (1), 79-86. 12. Haertling, G. H.; LAND, C. E., Hot‐Pressed (Pb, La)(Zr, Ti) O3 Ferroelectric Ceramics for Electrooptic Applications. Journal of the American Ceramic Society 1971, 54, (1), 1-11. 13. Aman, Y.; Garnier, V.; Djurado, E., Influence of green state processes on the sintering behaviour and the subsequent optical properties of spark plasma sintered alumina. Journal of the European Ceramic Society 2009, 29, (16), 3363-3370. 14. Chaim, R.; Marder, R.; Estournes, C., Optically transparent ceramics by spark plasma sintering of oxide nanoparticles. Scripta Materialia 2010, 63, (2), 211-214. 15. Liu, J.; Shen, Z.; Yao, W.; Zhao, Y.; Mukherjee, A. K., Visible and infrared transparency in lead-free bulk BaTiO3 and SrTiO3 nanoceramics. Nanotechnology 2010, 21, (7), 075706. 16. Stefanik, T.; Gentilman, R.; Hogan, P. In Nanocomposite optical ceramics for infrared windows and domes, Defense and Security Symposium, 2007; International Society for Optics and Photonics: pp 65450A-65450A-5. 17. Jiang, H.; Zou, Y.; Chen, Q.; Li, K.; Zhang, R.; Wang, Y.; Ming, H.; Zheng, Z. In Transparent electro-optic ceramics and devices, Photonics Asia 2004, 2005; International Society for Optics and Photonics: pp 380-394. 18. Li, K.; Wang, Q., Electro-optic ceramic material and device. Google Patents: 2003. 19. Li, K. K.; Wang, Q., Electro-optic ceramic material and device. US patent 2004, 6746618. 20. Ruan, W.; Li, G.; Zeng, J.; Bian, J.; Kamzina, L. S.; Zeng, H.; Zheng, L.; Ding, A., Large Electro‐Optic Effect in La‐Doped 0.75 Pb (Mg1/3Nb2/3) O3–0.25 PbTiO3 Transparent Ceramic by Two‐Stage Sintering. Journal of the American Ceramic Society 2010, 93, (8), 2128-2131. 21. Barad, Y.; Lu, Y.; Cheng, Z.-Y.; Park, S.-E.; Zhang, Q., Composition, temperature, and crystal orientation dependence of the linear electro-optic properties of Pb (Zn 1/3 Nb 2/3) O 3–PbTiO 3 single crystals. Applied Physics Letters 2000, 77, (9), 1247-1249. 22. Koonce, C.; Cohen, M. L.; Schooley, J.; Hosler, W.; Pfeiffer, E., Superconducting Transition Temperatures of Semiconducting SrTi O 3. Physical Review 1967, 163, (2), 380. 23. Bandura, A. V.; Evarestov, R. A.; Zhukovskii, Y. F., Energetic stability and photocatalytic activity of SrTiO3 nanowires: ab initio simulations. Rsc Advances 2015, 5, (31), 24115-24125. 24. Marques, A. C. L. S., Advanced Si pad detector development and SrTio3 studies by emission channeling and hyperfine interaction experiments. 2009. 25. Weber, M.; Allen, R., Nuclear magnetic resonance study of the phase transition in strontium titanate. The Journal of Chemical Physics 1963, 38, (3), 726-729. 26. Leapman, R.; Grunes, L.; Fejes, P., Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Physical Review B 1982, 26, (2), 614. 27. Bell, R.; Rupprecht, G., Elastic constants of strontium titanate. Physical Review 1963, 129, (1), 90. 28. Cho, S. G.; Johnson, P. F., Evolution of the microstructure of undoped and Nb-doped SrTiO3. Journal of Materials Science 1994, 29, (18), 4866-4874. 29. Liou, Y.-C.; Wu, C.-T.; Chung, T.-C., Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process. Journal of Materials Science 2007, 42, (10), 3580-3587. 30. Bae, S. I.; Baik, S., Sintering and grain growth of ultrapure alumina. Journal of Materials Science 1993, 28, (15), 4197-4204. 31. Babilo, P.; Haile, S. M., Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. Journal of the American Ceramic Society 2005, 88, (9), 2362-2368. 32. MacLaren, I.; Cannon, R. M.; Gulgun, M. A.; Voytovych, R.; Popescu-Pogrion, N.; Scheu, C.; Taffner, U.; Ruhle, M., Abnormal grain growth in alumina: Synergistic effects of yttria and silica. Journal of the American Ceramic Society 2003, 86, (4), 650-659. 33. Peng, C.-J.; Chiang, Y.-M., Grain growth in donor-doped SrTiO3. Journal of Materials Research 1990, 5, (06), 1237-1245. 34. Chung, S.-Y.; Kang, S.-J. L., Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3. Acta Materialia 2003, 51, (8), 2345-2354. 35. Chung, S.-Y.; Kang, S.-J. L., Effect of dislocations on grain growth in strontium titanate. Journal of the American Ceramic Society 2000, 83, (11), 2828-2832. 36. Sano, T.; Saylor, D. M.; Rohrer, G. S., Surface energy anisotropy of SrTiO3 at 1400°C in air. Journal of the American Ceramic Society 2003, 86, (11), 1933-1939. 37. Sano, T.; Kim, C.-S.; Rohrer, G. S., Shape evolution of SrTiO3 crystals during coarsening in a titania-rich liquid. Journal of the American Ceramic Society 2005, 88, (4), 993-996. 38. Rheinheimer, W.; Bäurer, M.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J., Growth of single crystalline seeds into polycrystalline strontium titanate: Anisotropy of the mobility, intrinsic drag effects and kinetic shape of grain boundaries. Acta Materialia 2015, 95, 111-123. 39. Rheinheimer, W.; Bäurer, M.; Chien, H.; Rohrer, G. S.; Handwerker, C. A.; Blendell, J. E.; Hoffmann, M. J., The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution. Acta Materialia 2015, 82, 32-40. 40. Petit, J.; Dethare, P.; Sergent, A.; Marino, R.; Ritti, M.-H.; Landais, S.; Lunel, J.-L.; Trombert, S., Sintering of α-alumina for highly transparent ceramic applications. Journal of the European Ceramic Society 2011, 31, (11), 1957-1963. 41. Sutorik, A. C.; Gilde, G.; Swab, J. J.; Cooper, C.; Gamble, R.; Shanholtz, E., Transparent Solid Solution Magnesium Aluminate Spinel Polycrystalline Ceramic with the Alumina‐Rich Composition MgO· 1.2 Al2O3. Journal of the American Ceramic Society 2012, 95, (2), 636-643. 42. Huang, Y.; Jiang, D.; Zhang, J.; Lin, Q., Fabrication of Transparent Lanthanum‐Doped Yttria Ceramics by Combination of Two‐Step Sintering and Vacuum Sintering. Journal of the American Ceramic Society 2009, 92, (12), 2883-2887. 43. Wang, Y.; Lu, B.; Sun, X.; Sun, T.; Xu, H., Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Advances in Applied Ceramics 2011, 110, (2), 95-98. 44. An, L.; Ito, A.; Goto, T., Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering. Journal of the European Ceramic Society 2011, 31, (9), 1597-1602. 45. Kim, B.-N.; Hiraga, K.; Morita, K.; Yoshida, H., Spark plasma sintering of transparent alumina. Scripta Materialia 2007, 57, (7), 607-610. 46. Gu, Y.; Loh, N.; Khor, K.; Tor, S.; Cheang, P., Spark plasma sintering of hydroxyapatite powders. Biomaterials 2002, 23, (1), 37-43. 47. Stuer, M.; Zhao, Z.; Aschauer, U.; Bowen, P., Transparent polycrystalline alumina using spark plasma sintering: effect of Mg, Y and La doping. Journal of the European Ceramic Society 2010, 30, (6), 1335-1343. 48. Evans, J., Pressureless Sintering of Boron Carbide. In Department of Materials Science and Engineering, Imperial College London: 2014. 49. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88, (605), 428-438. 50. Martin, M. C.; Mecartney, M. L., Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 2003, 161, (1), 67-79. 51. Thompson, A. W., Calculation of true volume grain diameter. Metallography 1972, 5, (4), 366-369. 52. Darwish, A.; Badr, Y.; El Shaarawy, M.; Shash, N.; Battisha, I., Influence of the Nd 3+ ions content on the FTIR and the visible up-conversion luminescence properties of nano-structure BaTiO 3, prepared by sol–gel technique. Journal of Alloys and Compounds 2010, 489, (2), 451-455. 53. Kim, W.; Veriansyah, B.; Kim, J.; Oh, S., Formation of titanium hydroxide nanoparticles in supercritical carbon dioxide. Journal of Ceramic Processing Research 2008, 9, (1), 88. 54. Li, Y.; Kimura, Y.; Arikawa, T.; Wang-Otomo, Z.-Y.; Ohno, T., ATR–FTIR Detection of Metal-Sensitive Structural Changes in the Light-Harvesting 1 Reaction Center Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2013, 52, (50), 9001-9008. 55. Sulaeman, U.; Yin, S.; Sato, T., Visible light photocatalytic activity induced by the carboxyl group chemically bonded on the surface of SrTiO 3. Applied Catalysis B: Environmental 2011, 102, (1), 286-290. 56. Ho, T.-H.; Chang, S.-J.; Li, C.-C., Effect of surface hydroxyl groups on the dispersion of ceramic powders. Materials Chemistry and Physics 2016, 172, 1-5. 57. Dong, L.; Shi, H.; Cheng, K.; Wang, Q.; Weng, W.; Han, W., Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research 2014, 7, (9), 1311-1318. 58. Limaye, M. V.; Singh, S. B.; Date, S. K.; Kothari, D.; Reddy, V. R.; Gupta, A.; Sathe, V.; Choudhary, R. J.; Kulkarni, S. K., High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. The Journal of Physical Chemistry B 2009, 113, (27), 9070-9076. 59. Li, H.; Yin, S.; Wang, Y.; Kobayashi, M.; Tezuka, S.; Kakihana, M.; Sato, T., Effect of carboxyl group on the visible-light photocatalytic activity of SrTiO3 nanoparticles. Research on Chemical Intermediates 2013, 39, (4), 1615-1621. 60. Zhang, J.; Ebbens, S.; Chen, X.; Jin, Z.; Luk, S.; Madden, C.; Patel, N.; Roberts, C. J., Determination of the surface free energy of crystalline and amorphous lactose by atomic force microscopy adhesion measurement. Pharmaceutical research 2006, 23, (2), 401-407. 61. Rheinheimer, W.; Hoffmann, M. J., Grain growth transitions of perovskite ceramics and their relationship to abnormal grain growth and bimodal microstructures. Journal of materials science 2016, 51, (4), 1756-1765. 62. Baeurer, M.; Kungl, H.; Hoffmann, M. J., Influence of Sr/Ti Stoichiometry on the Densification Behavior of Strontium Titanate. Journal of the American Ceramic Society 2009, 92, (3), 601-606. 63. Abrantes, J. C. C.; Labrincha, J. A.; Frade, J. R., Behavior of strontium titanate ceramics in reducing conditions suggesting enhanced conductivity along grain contacts. Journal of the European Ceramic Society 2002, 22, (9–10), 1683-1691. 64. Petzelt, J.; Ostapchuk, T.; Gregora, I.; Rychetsky, I.; Hoffmann-Eifert, S.; Pronin, A. V.; Yuzyuk, Y.; Gorshunov, B. P.; Kamba, S.; Bovtun, V.; Pokorny, J.; Savinov, M.; Porokhonskyy, V.; Rafaja, D.; Vanek, P.; Almeida, A.; Chaves, M. R.; Volkov, A. A.; Dressel, M.; Waser, R., Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries. Physical Review B 2001, 64, (18). 65. Kao, C.-F.; Yang, W.-D., Preparation and electrical characterisation of strontium titanate ceramic from titanyl acylate precursor in strong alkaline solution. Ceramics International 1996, 22, (1), 57-66.
|