|
[1] T. Yuan, J. Meng, T. Hao, Z. Wang, and Y. Zhang, "A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation," ACS Appl Mater Interfaces, vol. 7, no. 27, pp. 14896-904, Jul 15 2015. [2] 李科諒, "自廢偏光板回收三醋酸纖維素 (TAC) 之水解及改質研究," 2011. [3] F. Anton, "Process and apparatus for preparing artificial threads," ed: Google Patents, 1934. [4] C. Wang, H.-S. Chien, C.-H. Hsu, Y.-C. Wang, C.-T. Wang, and H.-A. Lu, "Electrospinning of polyacrylonitrile solutions at elevated temperatures," Macromolecules, vol. 40, no. 22, pp. 7973-7983, 2007. [5] H. Fong, I. Chun, and D. Reneker, "Beaded nanofibers formed during electrospinning," Polymer, vol. 40, no. 16, pp. 4585-4592, 1999. [6] A. Koski, K. Yim, and S. Shivkumar, "Effect of molecular weight on fibrous PVA produced by electrospinning," Materials Letters, vol. 58, no. 3, pp. 493-497, 2004. [7] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of colloid and interface science, vol. 36, no. 1, pp. 71-79, 1971. [8] S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, "Micro-and nanostructured surface morphology on electrospun polymer fibers," Macromolecules, vol. 35, no. 22, pp. 8456-8466, 2002. [9] C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, "Processing and microstructural characterization of porous biocompatible protein polymer thin films," Polymer, vol. 40, no. 26, pp. 7397-7407, 1999. [10] M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, "Electrospinning of polyurethane fibers," Polymer, vol. 43, no. 11, pp. 3303-3309, 2002. [11] A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Taylor cone and jetting from liquid droplets in electrospinning of nanofibers," Journal of applied physics, vol. 90, no. 9, pp. 4836-4846, 2001. [12] D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, no. 3, p. 216, 1996. [13] P. Sarkar, S. Datta, and P. S. Nicholson, "Functionally graded ceramic/ceramic and metal/ceramic composites by electrophoretic deposition," Composites Part B: Engineering, vol. 28, no. 1-2, pp. 49-56, 1997. [14] L. Besra and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in materials science, vol. 52, no. 1, pp. 1-61, 2007. [15] S. W. Lam, K. Chiang, T. M. Lim, R. Amal, and G. K.-C. Low, "Electrophoresis–A new approach for the determination of organic matters adsorption on irradiated TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol. 187, no. 1, pp. 127-132, 2007. [16] A. J. Krejci, I. Gonzalo-Juan, and J. H. Dickerson, "Evolution of ordering in iron oxide nanoparticle monolayers using electrophoretic deposition," ACS Appl Mater Interfaces, vol. 3, no. 9, pp. 3611-5, Sep 2011. [17] G. E. Sharaf El-Deen, N. G. Imam, and R. R. Ayoub, "Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution," Radiochimica Acta, vol. 105, no. 2, 2017. [18] K. S. Masato Takeuchi, Gianmario Martra, Salvatore Coluccia,and and M. Anpo, "Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface," J. Phys. Chem. B, pp 15422–15428. [19] R. Wang et al., "Light-induced amphiphilic surfaces," Nature, vol. 388, no. 6641, p. 431, 1997. [20] H. Shi et al., "A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation," Journal of Membrane Science, vol. 506, pp. 60-70, 2016. [21] J. Kong and K. Li, "Oil removal from oil-in-water emulsions using PVDF membranes," Separation and purification technology, vol. 16, no. 1, pp. 83-93, 1999. [22] M. Tao, L. Xue, F. Liu, and L. Jiang, "An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation," Advanced Materials, vol. 26, no. 18, pp. 2943-2948, 2014. [23] W. Zhang, Z. Shi, F. Zhang, X. Liu, J. Jin, and L. Jiang, "Superhydrophobic and superoleophilic PVDF membranes for effective separation of water‐in‐oil emulsions with high flux," Advanced Materials, vol. 25, no. 14, pp. 2071-2076, 2013. [24] Y. Zhu, D. Wang, L. Jiang, and J. Jin, "Recent progress in developing advanced membranes for emulsified oil/water separation," NPG Asia Materials, vol. 6, no. 5, p. e101, 2014. [25] S. J. Gao, Z. Shi, W. B. Zhang, F. Zhang, and J. Jin, "Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions," ACS nano, vol. 8, no. 6, pp. 6344-6352, 2014. [26] M. Diba, D. W. H. Fam, A. R. Boccaccini, and M. S. P. Shaffer, "Electrophoretic deposition of graphene-related materials: A review of the fundamentals," Progress in Materials Science, vol. 82, pp. 83-117, 2016. [27] M. Bognitzki et al., "Nanostructured fibers via electrospinning," Advanced Materials, vol. 13, no. 1, pp. 70-72, 2001. [28] 汪敬凱, "可見光驅動二氧化鈦/釩酸銀/石墨烯混成光觸媒之合成與催化特性研究," 2016. [29] G. Wolansky and A. Marmur, "The Actual Contact Angle on a Heterogeneous Rough Surface in Three Dimensions," Langmuir, vol. 14, no. 18, pp. 5292-5297, 1998/09/01 1998. [30] D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chemical Society Reviews, vol. 39, no. 1, pp. 228-240, 2010. [31] "Mechanism of Photoinduced Superhydrophilicity on the TiO2 Photocatalyst Surface." [32] S. Cabanas-Polo and A. R. Boccaccini, "Electrophoretic deposition of nanoscale TiO2: technology and applications," Journal of the European Ceramic Society, vol. 36, no. 2, pp. 265-283, 2016. [33] J. Du, X. Y. Li, K. Li, X. Gu, W. Q. Qi, and K. Zhang, "High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition," Journal of Alloys and Compounds, vol. 687, pp. 893-897, Dec 2016. [34] N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, "Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle," The Journal of Physical Chemistry B, vol. 107, no. 4, pp. 1028-1035, 2003/01/01 2003. [35] N. Sakai, R. Wang, A. Fujishima, T. Watanabe, and K. Hashimoto, "Effect of Ultrasonic Treatment on Highly Hydrophilic TiO2 Surfaces," Langmuir, vol. 14, no. 20, pp. 5918-5920, 1998/09/01 1998.
|