跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/03/18 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江鈺婷
研究生(外文):Yu-Ting Chiang
論文名稱:改良面成型快速原型系統應用於快速模具之研究
論文名稱(外文):Research of an Improved Area Forming Rapid Prototyping System Applied to Rapid Tooling
指導教授:邱士軒邱士軒引用關係
指導教授(外文):Shih-Hsuan Chiu
口試委員:邱智瑋林其禹溫哲彥彭勝宏
口試委員(外文):Chih-Wei ChiuChyi-Yen LinChe-yen WenSheng-Hong Pong
口試日期:2017-07-17
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:快速原型面成型自動化光硬化樹脂分散性快速模具
外文關鍵詞:Rapid prototypingPhoto-maskAutomatedPhotopolymerDispersibilityRapid tooling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究是對邱士軒教授實驗室研究團隊過去所研發之新型面成型快速原型系統進行改善,透過面成型快速原型系統的機構設計研發出改良型面成型快速原型系統。邱士軒教授實驗室研究團隊過去所研發之新型面成型快速原型系統使用兩組攪拌裝置的供料槽控制添加物的分散性,而每次實驗至少需消耗4000ml的原料,且機台是屬於半自動的供料方式,清理機台也較耗時。
為了克服這樣的問題,本研究以一組攪拌裝置,以及自動回抽餘料的方式,改善了實驗需消耗大量原料的問題,改善後的面成型快速原型系統,實驗時只需要300ml的原料,且機台供料方式為自動化系統,也大幅縮短清理機台的時間。
最後,本研究將光硬化樹脂添加銅粉製作出快速模具,並利用材料機械性質試驗、材料熱性質試驗、材料表面分析試驗、3D元件製作等實驗進行系統改善的驗證與分析,以落實本研究之目標。
The purpose of this research is to develop an improved photo-mask rapid prototyping system based on novel photo-mask rapid prototyping system which is made by Professor Chiu’s research team in the past. The system utilizes mixing tank with two stirrers to control the dispersibility of additives. Each experiment needs to consume 4000ml of raw materials. Besides, the system is half-automated, so it spends more time to clean after doing the experiments.
In order to overcome the problem, this research utilizes mixing tank with one stirrers and automated system. After improvement, the feeder system is automated and it only needs 300ml of raw materials for consumption.
Finally, the improved system made rapid tooling with copper/photo-resin composite materials. In order to optimization, the process parameters are adjusted by the experiments which consist of the mechanical properties, thermal properties, morphology analysis and 3D component production.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖索引 VII
表索引 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究背景 3
1.3.1 快速原型加工原理 3
1.3.2 快速原型系統分類 4
1.3.3 光硬化樹脂與硬化原理 13
1.3.4 快速模具 17
第二章 改良面成型快速原型系統設計與開發 18
2.1 系統架構 18
2.1.1 攪拌系統 20
2.1.2 供料系統 21
2.1.3 鋪層裝置 22
2.1.4 料槽 24
2.1.5 改良面成型快速原型機設計圖 25
2.2 系統整合 26
2.2.1 機台組裝 27
2.2.2 控制機箱設計 29
2.2.3 軟體介面設計 30
第三章 實驗方法 31
3.1 實驗材料 31
3.2 樣品製備與實驗流程 32
3.3 實驗設備與儀器 34
第四章 實驗結果與討論 40
4.1 熱性質 40
4.1.1 熱重損失分析 40
4.1.2 熱傳導係數分析 42
4.2 機械性質 43
4.2.1 拉伸測試 43
4.2.2 硬度測試 45
4.3 表面形態分析 46
4.4 3D元件與快速模具製作 52
第五章 結論 57
參考文獻 58
[1] 財團法人塑膠工業技術發展中心,「產品開發的捷徑—從快速原型至快速模具之快速試製技術(一)」,震雄工業月刊雜誌,2015年03月刊。
[2] CustomMade, “The Power of Printing”, 2014. -(https://www.custommade.com/blog/power-of-3d-printing/)
[3] D.T. Pham and R.S. Gault, “A comparison of rapid prototyping technologies”, International Journal of Machine Tools & Manufacture, Vol. 38, No. 10-11, pp. 1257-1287 , 1998 .
[4] T. Grünberger and R. Domröse, “Direct Metal Laser Sintering -Identification of process phenomena by optical in-process monitoring”, Laser Technik Journal, Vol. 12, No. 1, pp. 45-48, 2015.
[5] Y.Y. Chiu, “Direct Metal Laser Sintering (DMLS) Applied for Advanced Tooling Manufacturing”, CAE Molding Solution Alliance, 2011.
[6] J. Zhou and L. Lu, “On Biomimetics”, InTech, pp. 54-90, 2011.
[7] 吳顯東,「3D列印材料發展現況與趨勢」,2013。
[8] 陳柏蓉,「消費者與製造者的界線-淺談3D列印將如何影響現有製造業生產與消費模式」,台灣經濟研究月刊,第37卷第3期,103年3月。
[9] M. W. Khaing, J. Y. H. Fuh and L. Lu, “Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts,” Journal of Materials Processing Technology, Vol. 113, No. 1-3, pp. 269-272, 2001.
[10] R.A. Giordano, B.M. Wu, S.W. Borland, L.G. Cima, E.M. Sachs and M.J. Cima, “Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing”, Journal of Biomaterials Science, Polymer Edition, Vol. 8, No. 1, pp 63-75, 1996.
[11] E. Sachs, M. Cima, P. Williams, D. Brancazio and J. Cornie, “Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Journal of Engineering for Industry, Vol. 114, No. 4, pp. 481-488, 1992.
[12] R.P. Xu, W.P. Yang, X.L. Zhang and L. Li, “The Revolution of Product Innovative Design Brought by Rapid Prototyping Technology”, Journal of Kunming University of Science and Technology, Vol. 26, No. 4, pp. 1-5, 2001.
[13] 汪家昌、鄭正元,「快速原型技術至快速模具技術之發展」,經濟部技術處,1999模具技術成果暨論文集,台北市世貿大樓展覽館一樓,207頁-212頁,8月,1999。
[14] 盧崑宗、吳幸芳,「桐油為基質自由基聚合型UV塗料之合成與應用」,林業研究季刊,第30卷第1期,57頁-66頁,2008。
[15] 周洺偉,「陽離子型紫外光硬化樹脂之研究」,碩士論文,國立台北科技大學,化學工程研究所,2007。
[16] 吳智偉,「新型光罩式快速原型系統之研發」,碩士論文,國立台灣科技大學,纖維及高分子工程系,2001。
[17] 張峻豪,「具備液態複合材料添加物分散性控制之新型面成型快速原型系統研發」,碩士論文,國立台灣科技大學,材料科學與工程系,2015。
[18] Y.P. Yu, P. Lei, J. Hu, W.H. Wu, Y.F. Zhao and Y.M. Li, “Copper-induced cytotoxicity: reactive oxygen species or islet amyloid polypeptide oligomer formation”, The Royal Society of Chemistry, Vol. 46, No.37, pp. 6909-6911, 2010.
[19] 陳復東,「射出成型用之快速模具實驗探討」,碩士論文,國立臺灣大學,機械工程學研究所,1999。
[20] D. King, T. Tansey, “Alternative materials for rapid tooling”, Journal of Materials Processing Technology, Vol. 121, No. 2-3, pp. 313-317, 2002.
[21] S.H. Masood, W.Q. Song, “Development of new metal/polymer materials for rapid tooling using Fused deposition modelling”, Materials & Design, Vol. 25, No. 7, PP. 587-594, 2004.
[22] N.P. Karapatis, J.-P.S. van Griethuysen and R. Glardon, “Direct rapid tooling : a review of current research”, Rapid Prototyping Journal, Vol. 4, No. 2, pp. 77-89, 1998.
[23] B. Mueller, D. Kochan, “Laminated object manufacturing for rapid tooling and patternmaking in foundry industry”, Computers in Industry, Vol. 39, No. 1, pp. 47-53, 1999.
[24] A. Simchi, F. Petzoldt, H. Pohl, “On the development of direct metal laser sintering for rapid tooling”, Journal of Materials Processing Technology, Vol. 141, No. 3, pp. 319-328, 2003.
[25] H. Zhang, G. Wang, Y. Luo, T. Nakaga, “Rapid hard tooling by plasma spraying for injection molding and sheet metal forming”, Thin Solid Films, Vol. 390, No. 1-2, pp. 7-12, 2001.
[26] G.N. Levy, R. Schindel, J.P. Kruth, “RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES”, CIRP Annals - Manufacturing Technology, Vol. 52, No. 2, pp. 589-609, 2003.
[27] E. Radstok, “Rapid tooling”, Rapid Prototyping Journal, Vol. 5, No. 4, pp. 164 – 169, 1999.
[28] D. King, T. Tansey, “Rapid tooling: selective laser sintering injection tooling”, Journal of Materials Processing Technology, Vol. 132, No. 1-3, pp. 42-48, 2003.
[29] C. K. Chua, K. H. Hong and S. L. Ho, “Rapid tooling technology. Part 1. A comparative study”, The International Journal of Advanced Manufacturing Technology, Vol. 15, No. 8, pp 604–608, 1999.
[30] A. Rosochowski, A. Matuszak, “Rapid tooling: the state of the art”, Journal of Materials Processing Technology, Vol. 106, No. 1–3, pp. 191-198, 2000.
[31] 王俊明,「多噴嘴快速原型系統高等路徑規劃之研究」,碩士論文,國立臺灣科技大學,機械工程系,2001。
[32] 吳典錡,「面成型快速原型系統之光罩校正法與光硬化樹脂奈米複合材料物性之研究」,博士論文,國立臺灣科技大學,高分子工程系,2008。
[33] M. Rusu, N. Sofian, D. Rusu, “Mechanical and thermal properties of zinc powder filled high density polyethylene composites”, Polymer Testing, Vol. 20, No. 4, pp. 409-417 , 2001.
[34] J.A. Molefi, A.S. Luyt and I. Krupa, “Comparison of the influence of copper micro- and nano-particles on the mechanical properties of polyethylene/copper composites”, J Mater Sci., Vol. 45, No. 1, pp. 82-88, 2010.
[35] Thingiverse-( http://www.thingiverse.com )
[36] ASTM D638, “Standard Test Method for Tensile Properties of Plastics”, American Society for Testing and Material, 2002.
[37] ASTM D2240, “Standard Test Method for Rubber Property Durometer Hardness”, American Society for Testing and Material, 2002.
[38] A.S. Luyt, J.A. Molefi, and H. Krump, “Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites”, Polymer Degradation and Stability, Vol. 91, No. 7, pp. 1629-1636, 2006.
[39] R. Singh, S. Singh, “Development of Nylon Based FDM Filament for Rapid Tooling Application”, Journal of The Institution of Engineers (India): Series C, Vol. 95, No. 2, pp 103–108, 2014.
[40] S.H. Chiu, S.H. Pong, D.C. Wu, C.H. Lin, “A study of photomask correction method in area‐forming rapid prototyping system”, Rapid Prototyping Journal, Vol. 14, No. 5, pp. 285-292, 2008.
[41] S. Hwang, E.I. Reyes, K.S. Moon, R.C. Rumpf, N.S. Kim, “Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process”, Journal of ELECTRONIC MATERIALS, Vol. 44, No. 3, pp. 771-777, 2015.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top