|
[1] K. E. Drexler, “Nanotechnology: From Feynman to Funding”, Bulletin of Science, Technology & Society, 2004, 24, 21-27. [2] G. A. Silva, “Introduction to Nanotechnology and its Applications to Medicine”, Surg Neurol, 2004, 61, 216-20. [3] C. M. Lieber, “One-dimensional Nanostructures: Chemistry, Physics & Applications”, Solid State Communications, 1998, 107, 607-616. [4] Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties”, The Journal of Physical Chemistry, 1991, 95, 525-532. [5] C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, “Chemistry and Properties of Nanocrystals of Different Shapes”, Chemical Reviews, 2005, 105, 1025-1102. [6] A. M. Merlo, “The Contribution of Surface Engineering to the Product Performance in the Automotive Industry”, Surface and Coatings Technology, 2003, 174 -175, 21-26. [7] G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. Bradley and K. G. Kornev, “Carbon Nanotubes Loaded with Magnetic Particles”, Nano Letters, 2005, 5, 879-884. [8] H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You and C. H. Yan, “High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and Optical Properties”, Journal of the American Chemical Society, 2006, 128, 6426-6436. [9] Z. Xu, C. Li, P. Yang, C. Zhang, S. Huang and J. Lin, “Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties”, Crystal Growth & Design, 2009, 9, 4752-4758. [10] Y. Chang and H. Zeng, “Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons”, Crystal Growth & Design, 2004, 4, 397-402. [11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Advanced Materials, 2003, 15, 353-389. [12] Y. Huang, X. Duan and C. M. Lieber, “Semiconductor Nanowires: Nanoscale Electronics and Optoelectronics”, Marcel Dekker: New York, 2005. [13] M. Law, J. Goldberger and P. Yang, “Semiconductor Nanowires and Nanotubes”, Annual Review of Materials Research, 2004, 34, 83-122. [14] C.N.R Rao, F.L. Deepak, G. Gundiah and A. Govindaraj, “Inorganic Nanowires”, Progress in Solid State Chemistry, 2003, 31, 5-147. [15] C. Lai, M. Lu and L. Chen, “Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage”, Journal of Materials Chemistry, 2012, 22, 19-30. [16] R. S. Wagner and W. C. Eliis, “Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, 1964, 4, 89-90. [17] H. D. Park and S. M. Prokes, “Study of Nanowire Growth Mechanisms: VLS and Si Assisted”, Springer, 2008, 3, 1-15. [18] R. W. Balluffi and B. H. Alexander, “Relative Diffusion Rates of Zinc and Copper in Alpha Brass”, Journal of Metals, 1952, 4, 1315-1316. [19] R. W. Balluffi and B. H. Alexander, “Dimensional Changes Normal to the Direction of Diffusion”, Journal of Applied Physics, 1952, 23, 953-956. [20] R. W. Balluffi and B. H. Alexander, “Development of Porosity During Diffusion in Substitutional Solid Solutions”, Journal of Applied Physics, 1952, 23, 1237-1244. [21] J. A. Haber, P. C. Gibbons and W. E. Buhro, “Morphological Control of Nanocrystalline Aluminum Nitride: Aluminum Chloride-Assisted Nanowhisker Growth”, Journal of the American Chemical Society, 1997, 119, 5455-5456. [22] G. Han, Z. G. Chen, J. Drennan and J. Zou, “Indium Selenides: Structural Characteristics, Synthesis and Their Thermoelectric Performances”, Small, 2014, 10, 2747-2765. [23] J. H. C. Hogg, H. H. Sutherland and D. J. Williams, “The Crystal Structure of Tetraindium Triselenide”, Acta Crystallographica Section B, 1973, B29, 1590-1593. [24] S. Popovic, A. Tonejc, B. Grzeta-Plenkovic and R. Trojko, “Revised and New Crystal Data for Indium Selenides”, Journal of Applied Crystallography , 1979, 12, 416-420. [25] K. Imai, K. Suzuki, T. Haga, Y. Hasegawa and Y. Abe “Phase Diagram of In-Se System and Crystal Growth of Indium Monoselenide” Journal of Crystal Growth, 1981, 54, 501-506. [26] J. H. C. Hogg, “The Crystal Structure of In6Se7”, Acta Crystallographica Section B, 1971, 27, 1630-1634. [27] G. Han, Z. G. Chen, C. Sun, L. Yang, L. Cheng, Z. Li, W. Lu, Z. M. Gibbs, J. Snyder, K. Jack, J. Drennan and J. Zou, “A New Crystal: Layer-Structured Rhombohedral In3Se4”, CrystEngComm, 2014, 16, 393-398. [28] J. S. Rhyee, K. H. Lee, S. M. Lee , E. Cho, S. I. Kim , E. Lee ,Y. S. Kwon, J. H. Shim and G. Kotliar, “Peierls Distortion as a Route to high Thermoelectric Performance in In4Se3-δ Crystals”, Nature, 2009, 459, 965-968. [29] S. Rhyee, K. Ahn, K. H. Lee, H. S. Ji and J.H. Shim, “Enhancement of the Thermoelectric Figure‐of‐Merit in a Wide Temperature Range in In4Se3–xCl0.03 Bulk Crystals”, Advanced Materials, 2011, 23, 2191-2194. [30] Z. Lin, L. Chen, L. Wang, J. Zhao and L. Wu, “A Promising Mid‐Temperature Thermoelectric Material Candidate: Pb/Sn-Codoped In4PbxSnySe3”, Advanced Materials, 2013, 25, 4800-4806. [31] T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando and D. Golberg, “Fabrication of High-Quality In2Se3 Nanowire Arrays Toward High-Performance Visible-Light Photodetectors”, ACS Nano, 2010, 4, 1596–1602. [32] C. Julien, E. Hatzikraniotis, A. Chevy and K. Kambas, “Electrical Behavior of Lithium Intercalated Layered In-Se Compounds”, Mater. Materials Research Bulletin, 1985, 20, 287-292. [33] T. Zhai, Y. Ma, L. Li, X. Fang, M. Liao, Yasuo Koide, J. Yao, Y. Bandoa and D. Golberg, “Morphology-Tunable In2Se3 Nanostructures with Enhanced Electrical and Photoelectrical Performances via Sulfur Doping”, Journal of Materials Chemistry, 2010, 20, 6630-6637. [34] Y. Li, J. Gao, Q. Li, M. Peng, X. Sun, Y. Li, G. Yuan, W. Wen and M. Meyyappan, “Thermal Phase Transformation of In2Se3 Nanowires Studied by in Situ synchrotron Radiation X-Ray Diffraction”, Journal of Materials Chemistry, 2011, 21, 6944-6947. [35] J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson and C. C. Yang, “Crystal Structure of κ-In2Se3”, Applied Physics Letters, 2002, 81, 4356-4358. [36] S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon and J. Song, “Growth of CuIn3Se5 Layer on CuInSe2 Films and its Effect on the Photovoltaic Properties of In2Se3/CuInSe2 Solar Cells”, Thin Solid Films, 1998, 323, 265-269. [37] H. Lee and Y. K. Kim, “Switching Behavior of Indium Selenide-Based Phase-Change Memory Cell”, IEEE Transactions on Magnetics, 2005, 41, 1034-1036. [38] C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen and Y. S. Huang, “Surface Oxide Effect on Optical Sensing and Photoelectric Conversion of α-In2Se3 Hexagonal Microplates”, ACS Applied Material Interface, 2013, 5, 2269-2277. [39] C. H. Ho and Y. C. Chen, “Thickness-Tunable Band Gap Modulation in γ-In2Se3”, Royal Society of Chemistry Advances, 2013, 3, 24896-24899. [40] T. Ikari, S. Shigetomi and K. Hashimoto, “Crystal Structure and Raman Spectra of InSe”, Physica Status Solidi (b), 1982, 111, 477-481. [41] A. M. Mancini, G. Micocci and A. Rizzo, “New Materials for Optoelectronic Devices: Growth and Characterization of Indium and Gallium Chalcogenide Layer Compounds”, Materials Chemistry and Physics, 1983, 9, 29-54. [42] Z. Chen, J. Biscaras and A. Shukla, “A High Performance Graphene/Few-Layer InSe Photo-Detector”, Nanoscale, 2015, 7, 5981-5986. [43] B. A. Unvala, “Chemical Vapor Deposition”, US Patent 499361, 1991. [44] E. Mafakheri, A. Salimi, R. Hallaj, A. Ramazani and M. A. Kashi, “Synthesis of Iridium Oxide Nanotubes by Electrodeposition intoPolycarbonate Template: Fabrication of Chromium(III) and Arsenic(III) Electrochemical Sensor”, Electroanalysis, 2011, 23, 2429-2437. [45] C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, 1994, 266, 1961-1966. [46] A. Huczko, “Template-Based Synthesis of Nanomaterials”, Applied Physics A, 2000, 70, 365-376. [47] C. R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chemistry of Materials, 1996, 8, 1739-1746. [48] J. Wang, M. Tian, N. Kumar and T. E. Mallouk, “Controllable Template Synthesis of Superconducting Zn Nanowires with Different Microstructures by Electrochemical Deposition”, Nano Letter, 2005, 5, 1247-1253. [49] S. Valizadeh, M. Abid, F. Hernandez-Ramırez, A. R. Rodrıguez, K. Hjort and J. Å. Schweitz, “Template Synthesis and Forming Electrical Contacts to Single Au Nanowires by Focused Ion Beam Techniques”, Nanotechnology, 2007, 17, 1134-1139. [50] C. Xu, L. Zhang, H. Zhang and H. Li, “Well-Dispersed Gold Nanowire Suspension for Assembly Application”, Applied Surface Science, 2005, 252, 1182-1186. [51] M. Zhou, S. Chen, S. Zhao and H. Ma, “One-Step Synthesis of Au–Ag Alloy Nanoparticles by a Convenient Electrochemical Method”, Physica E , 2006, 33, 28-34. [52] G. Zhang, E. Roy, H. Liu, W. Liu, S. Hou, Y. Kui and Z. Xue, “Field Emission from an Array of Free-Standing Metallic Nanowires”, Chinese Physics Letters, 2002, 19, 1016-1018. [53] J. Liu, J. Duan, M. g Hou, D. Mo, M. E. Toimil-Molares, S. Karim, T. W. Cornelius, D. Dobrev, H. J. Yao, Y. M. Sun and M. D. Hou, “Electrochemical Fabrication of Single-Crystalline and Polycrystalline Au Nanowires: the Influence of Deposition Parameters”, Nanotechnology, 2006, 17, 1922-1926. [54] C. Peng, L. Cheng and M. Mansuripur, “Experimental and Theoretical Investigations of Laser-Induced Crystallization and Amorphization in Phase-Change Optical Recording Media”, Journal of Applied Physics, 1997, 82, 4183-4191. [55] M. Yoshioka, B. C. Hancock and G. Zografi, “Crystallization of Indomethacin from the Amorphous State Below and Above its Glass Transition Temperature”, Journal of Pharmaceutical Sciences, 1994, 833, 1700-1705. [56] S. Raoux, W. Wełnic and D. Ielmini, “Phase Change Materials and Their Application to Nonvolatile Memories”, Chemical Reviews, 2010, 110, 240-267. [57] X. Sun, B. Yu, G. Ng, T. D. Nguyen and M. Meyyappan, ”III-VI Compound Semiconductor Indium Selenide (In2Se3) Nanowires: Synthesis and Characterization”, Applied Physics Letters, 2006, 89, 233121. [58] M. A. Kenawy, H. A. Zayed, A. M. Abo and El-Soud, “A.c. Photoconductivity and Optical Properties of Bulk Polycrystalline and Amorphous InxSe1−x Thin Films”, Journal of Materials Science: Materials in Electronics, 1990, 1, 115-117. [59] S. T.Lakshmikumar and A. C. Rastogi, ”Selenization of Cu and In Thin Films for the Preparation of Selenide Photo-Absorber Layers in Solar Cells Using Se Vapour Source”, Solar Energy Materials and Solar Cells, 1994, 32, 7-19. [60] J. Ye, T. Yoshida, Y. Nakamura and O. Nittono, “Optical Activity in the Vacancy Ordered III2VI3 Compound Semiconductor (Ga0.3In0.7)2Se3”, Applied Physics Letters,1995, 67, 3066-3068. [61] C. Julien, E. Hatzikraniotis and K. Kambas, “Electrical Transport Properties of Impurity-Doped In2Se3”, Physica Status Solidi (a), 1986, 97, 579-585. [62] Y. Zou, Z. G. Chen, Y. Huang, L. Yang, J. Drennan and J. Zou, ”Electrical Properties from Vapor-Solid-Solid Grown Bi2Se3 Nanoribbons and Nanowires”, The Journal of Physical Chemistry C, 2014, 111, 20620-20626. [63] M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng and Z. Liu, “Controlled Growth of Atomically Thin In2Se3 Flakes by van der Waals Epitaxy”, Journal of the American Chemical Society, 2013, 135, 13274-13277. [64] S. R. Suryawansh, P. K. Bankar, M. A. More and D. J. Late, “Vapour-Liquid-Solid Growth of One-Dimensional In2Se3 Nanostructures and their Promising Field Emission Behavior”, Royal Society of Chemistry, 2015, 5, 65274-65282. [65] G. Shen, D. Chen, P. C. Chen and C. Zhou, “Vapor-Solid Growth of One-Dimensional Layer-Structured Gallium Sulfide Nanostructures”, Journal of the American Chemical Society Nano, 2009, 3, 1115-1120. [66] Q. L. Li, C. H. Liu, Y. T. Nie, W. H. Chen, X. Gao, X. H. Sun and S. D. Wang, “Phototransistor Based on Single In2Se3 Nanosheets”, Nanoscale, 2014, 6, 14538-14542. [67] J. H. Yum , P. Walter , S. Huber , D. Rentsch , T. Geiger , F. Nüesch , F. D. Angelis , M. Grätzel and M. K. Nazeeruddin, “Efficient Far Red Sensitization of Nanocrystalline TiO2 Films by an Unsymmetrical Squaraine Dye”, Journal of the American Chemical Society, 2007, 129, 10320-10321. [68] H. Peng, C. Xie, D. T. Schoen and Y. Cui, “Large Anisotropy of Electrical Properties in Layer-Structured In2Se3 Nanowires”, Nano Letters, 2008, 8, 1511-1516. [69] K. Lai, H. Peng, W. Kundhikanjana, D. T. Schoen, Chong Xie, Stefan Meister, Y. Cui, M. A. Kelly and Z. X. Shen, “Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy”, Nano letters, 2009, 9, 1265-1269. [70] T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger and P. Yang, “Crystallographic Alignment of High-Density Gallium Nitride Nanowire Arrays”, Nature Materials, 2004, 3, 524-528. [71] C. M. Lieber, “Nanoscale Science and Technology: Building a Big Future from Small Things”, Materials Research Bulletin, 2003, 28, 486-491. [72] P. Yang, “The Chemistry and Physics of Semiconductor Nanowires”, Materials Research Bulletin, 2005, 30, 85-91. [73] B. A. Wacaser, K. A. Dick, J. Johansson, M. T. Borgström, K. Deppert and L. Samuelson, “Preferential Interface Nucleation: an Expansion of the VLS Growth Mechanism for Nanowires”, Advanced Materials, 2009, 20, 153-165. [74] Y. Wu , Y. Cui , L. Huynh , C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires”, Nano Letter, 2004, 4, 433-436. [75] D. Kang, T. Rim, C. Baek, M. Meyyappan and J. Lee, “Investigation of Electromigration in In2Se3 Nanowire for Phase Change Memory Devices”, Applied Physics Letters, 2013, 103, 233504. [76] D. Kang, T. Rim, C. Baek, M. Meyyappan and J. Lee, “Thermally Phase-Transformed In2Se3 Nanowires for Highly Sensitive Photodetectors”, Small, 2014, 10, 3795-3802. [77] Q. L. Li, Y. Li, J. Gao, S. D. Hwang and X. H. Sun, “High Performance Single In2Se3 Nanowire Photodetector”, Applied Physics Letters, 2011, 99, 243105. [78] Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, Journal of the American Chemical Society, 2001, 123, 3165-3166. [79] K. A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson and W. Seifert, “Failure of the Vapor-Liquid-Solid Mechanism in Au-Assisted MOVPE Growth of InAs Nanowires”, Nano Letters, 2005, 5, 761-764 [80] L. Bernstein, “Semiconductor Joining by the Solid‐Liquid‐Interdiffusion (SLID) Process I. The Systems Ag‐In, Au‐In, and Cu‐In”, Journal of the Electrochemical Society, 1966, 113, 1282-1288. [81] Y. K. Lin, H. W. Ting, C. Y. Wang, S. Gwo, L. J. Chou, C. J. Tsai and L. J. Chen, “Au Nanocrystal Array/Silicon Nanoantennas as Wavelength-selective Photoswitches”, Nano Letters, 2013, 13, 2723-2731. [82] H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai and L. J. Chen, “Large Area Controllable Hexagonal Close-packed Single-crystalline Metal Nanocrystal Arrays with Localized Surface Plasmon Resonance Response”, Journal of Materials Chemistry, 2013, 1, 3593-3599. [83] H. W. Wu, L. J. Chen and C. J. Tsai, “Self-assembled Epitaxial Silicon Nanowires Grown Along Easy-glide Directions on Si (001)”, Micro & Nano Letters, 2006, 1, 25-28. [84] E. Mafi, A. Soudi and Y. Gu, “Electronically Driven Amorphization in Phase-Change In2Se3 Nanowires”, The Journal of Physical Chemistry C”, 2012, 116, 22539-22544. [85] S. Webster, D. N. Batchelder and D. A. Smith, “Submicron Resolution Measurement of Stress in Silicon by Near-field Raman Spectroscopy”, Applied Physics Letters, 1998, 72, 1478-1480. [86] D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, R. M. Shelby, M. Salinga, C. M. Jefferson and M. Wuttig, “Characterization of Phase Change Memory Materials Using Phase Change Bridge Devices”, Journal of Applied Physics, 2009, 106, 054308. [87] A. Popov, “Two generations of Phase‐change Memory Devices: Differences and Common Problems”, Physica Status Solidi (b), 2009, 246, 1837-1840. [88] M. Osman, Y. Huang, W. Feng, G. Liu, Y. Qiu and P. Hu, “Modulation of Opto-Electronic Properties of InSe Thin Layers via Phase Transformation” Royal Society of Chemistry Advances, 2016, 6, 70452-70459. [89] W. Feng, W. Zheng, W. Cao and P. Hu, “Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface”, Advance Mater, 2014, 26, 6587-6593. [90] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi and A. I. Dmitriev, “Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement”, Advance Mater, 2013,40, 5714-5718. [91] C. Ulrich, M. A. Mroginski, A. R. Goñi, A. Cantarero, U. Schwarz, V. Muñoz and K. Syassen, “Vibrational Properties of InSe under Pressure: Experiment and Theory”, Physica Status Solidi (b), 1996, 198, 121-127. [92] S. Shigetomi and T. Ikari, “Annealing Behavior of Layer Semiconductor p-InSe Doped with Hg”, Japanese Journal of Applied Physics, 2000, 39, 1184-1185. [93] G. W. Mudd, S. A. Svatek, T. Ren, A. Patan`e, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev and Z. R. Kudrynskyi, “Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement”, Advance Mater, 2013, 25, 5714-5718. [94] R. Lewandowskaa, R. Bacewicza, J. Filipowicz and W. Paszkowicz, “Raman Scattering in α-In2Se3 Crystals”, Materials Research Bulletin, 2001, 36, 2577-2583. [95] C. Carlone, S. Jandl and H.R. Shanks, “Optical Phonons and Crystalline Symmetry of InSe”, Physica Status Solidi (b), 1981, 103, 123-130. [96] C. Ho, Y. Chen and C. Pan, “Structural Phase Transition and Erasable Optically Memorized Effect in Layered γ-In2Se3 Crystals”, Journal of Applied Physics, 2014, 115, 033501. [97] M. A. Afifi, N. A. Hegab and A. E. Bekheet, “Effect of Annealing on the Electrical Properties of In2Se3 Thin Films”, Vacuum, 1995, 46, 335-339. [98] A. Walsh, J. L. F. D. Silva, S. Wei, C. Ko¨rber, A. Klein, L. F. J. Piper, A. DeMasi, K. E. Smith, G. Panaccione, P. Torelli, D. J. Payne, A. Bourlange and R. G. Egdell, “Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy”, Physical Review Letters, 2008, 100, 167402.
|