1. 郭文法, 奈米複合材料加工應用. 1997, 工業材料.2. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
3. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
4. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1997. 78(9): p. 1667.
5. 林鼎晸, et al., 表面增強拉曼散射光譜的發展與應用.
6. Yang, D. Portable Raman Instrumentation for SERS Applications. AZO materials 2015; Available from: http://www.azom.com/article.aspx?ArticleID=12237.
7. Schmit, V.L., et al., Lab-on-a-bubble: synthesis, characterization, and evaluation of buoyant gold nanoparticle-coated silica spheres. Journal of the American Chemical Society, 2011. 134(1): p. 59-62.
8. Hu, F., et al., Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for practical quantitative detection. Scientific reports, 2014. 4.
9. Škoda, M., et al., Interaction of Au with CeO 2 (111): a photoemission study. The Journal of chemical physics, 2009. 130(3): p. 034703.
10. Ou, D.R., et al., Microstructural and metal− support interactions of the Pt− CeO2/C catalysts for direct methanol fuel cell application. Langmuir, 2011. 27(7): p. 3859-3866.
11. Chen, S.-Y., et al., Interface interactions and enhanced room temperature ferromagnetism of Ag@ CeO2 nanostructures. Nanoscale, 2017.
12. Patsalas, P., et al., Structure-dependent electronic properties of nanocrystalline cerium oxide films. Physical Review B, 2003. 68(3): p. 035104.
13. Sugiura, M., Oxygen storage materials for automotive catalysts: ceria-zirconia solid solutions. Catalysis Surveys from Asia, 2003. 7(1): p. 77-87.
14. Liu, Y., et al., Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies. Journal of Physics: Condensed Matter, 2008. 20(16): p. 165201.
15. Chen, X., et al., Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping. Nanotechnology, 2009. 20(11): p. 115606.
16. Trovarelli, A., Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews, 1996. 38(4): p. 439-520.
17. Nunan, J.G., et al., Physicochemical properties of Ce-containing three-way catalysts and the effect of Ce on catalyst activity. Journal of Catalysis, 1992. 133(2): p. 309-324.
18. Oh, S.H. and C.C. Eickel, Effects of cerium addition on CO oxidation kinetics over alumina-supported rhodium catalysts. Journal of Catalysis, 1988. 112(2): p. 543-555.
19. Serre, C., et al., Reactivity of Pt/Al2O3 and Pt-CeO2Al2O3 catalysts for the oxidation of carbon monoxide by oxygen: I. Catalyst characterization by TPR using CO as reducing agent. Journal of Catalysis, 1993. 141(1): p. 1-8.
20. Frost, J., Junction effect interactions in methanol synthesis catalysts. Nature, 1988. 334(6183): p. 577-580.
21. Golunski, S.E., et al., Origins of low-temperature three-way activity in Pt/CeO 2. Applied Catalysis B: Environmental, 1995. 5(4): p. 367-376.
22. Kašpar, J., P. Fornasiero, and M. Graziani, Use of CeO 2-based oxides in the three-way catalysis. Catalysis Today, 1999. 50(2): p. 285-298.
23. Li, R., et al., Synthesis and UV-shielding properties of ZnO-and CaO-doped CeO 2 via soft solution chemical process. Solid State Ionics, 2002. 151(1): p. 235-241.
24. Bamwenda, G.R. and H. Arakawa, Cerium dioxide as a photocatalyst for water decomposition to O 2 in the presence of Ce aq 4+ and Fe aq 3+ species. Journal of Molecular Catalysis A: Chemical, 2000. 161(1): p. 105-113.
25. Bamwenda, G.R., et al., The photocatalytic oxidation of water to O 2 over pure CeO 2, WO 3, and TiO 2 using Fe 3+ and Ce 4+ as electron acceptors. Applied Catalysis A: General, 2001. 205(1): p. 117-128.
26. Izu, N., et al., Resistive oxygen gas sensors based on CeO 2 fine powder prepared using mist pyrolysis. Sensors and Actuators B: Chemical, 2002. 87(1): p. 95-98.
27. Izu, N., W. Shin, and N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sensors and Actuators B: Chemical, 2003. 93(1): p. 449-453.
28. Trinchi, A., et al., Investigation of sol–gel prepared CeO 2–TiO 2 thin films for oxygen gas sensing. Sensors and Actuators B: Chemical, 2003. 95(1): p. 145-150.
29. Atanasov, P., et al., (1 10) Nd: KGW waveguide films grown on CeO 2/Si substrates by pulsed laser deposition. Thin Solid Films, 2004. 453: p. 150-153.
30. Shirakawa, M., et al., Fabrication and characterization of a CeO 2 buffer layer on c-plane and tilt-c-plane sapphire substrates. Physica C: Superconductivity, 2003. 392: p. 1346-1352.
31. Sammes, N. and Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics, 1997. 100(1-2): p. 39-44.
32. Gauckler, L.J., M. Go¨ dickemeier, and D. Schneider, Nonstoichiometry and defect chemistry of ceria solid solutions. Journal of Electroceramics, 1997. 1(2): p. 165-172.
33. 吳育璿, 一種製備核殼及中空銀顆粒的方法. 2014.
34. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
35. Pluym, T.C., et al., Silver-palladium alloy particle production by spray pyrolysis. Journal of materials research, 1995. 10(07): p. 1661-1673.
36. Patil, P.S., Versatility of chemical spray pyrolysis technique. Materials Chemistry and physics, 1999. 59(3): p. 185-198.
37. Naşcu, C., et al., Spray pyrolysis deposition of CuS thin films. Materials letters, 1997. 32(2-3): p. 73-77.
38. 周更生, et al., 奈米銀. 科學發展, 2006. 408: p. 32-33.
39. Sondi, I. and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 2004. 275(1): p. 177-182.
40. Alt, V., et al., An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004. 25(18): p. 4383-4391.
41. Doering, W.E. and S. Nie, Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B, 2002. 106(2): p. 311-317.
42. Felidj, N., et al., Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 2003. 82(18): p. 3095-3097.
43. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
44. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
45. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
46. Le Ru, E., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
47. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
48. Haes, A.J. and R.P. Van Duyne, A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 2004. 379(7-8): p. 920-930.
49. Xu, H., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters, 1999. 83(21): p. 4357.
50. Camden, J.P., et al., Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society, 2008. 130(38): p. 12616-12617.
51. Kumar, C.S., Raman spectroscopy for nanomaterials characterization. 2012: Springer Science & Business Media.
52. Hao, E. and G.C. Schatz, Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics, 2004. 120(1): p. 357-366.
53. 鄭信民, et al., X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 2002: p. 100-108.
54. Patterson, A., The Scherrer formula for X-ray particle size determination. Physical review, 1939. 56(10): p. 978.
55. Sayers, D.E., E.A. Stern, and F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended X-ray—absorption fine structure. Physical Review Letters, 1971. 27(18): p. 1204.
56. Koningsberger, D. and R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES. 1988.
57. Garvie, L. and P. Buseck, Determination of Ce 4+/Ce 3+ in electron-beam-damaged CeO 2 by electron energy-loss spectroscopy. Journal of Physics and Chemistry of solids, 1999. 60(12): p. 1943-1947.
58. Fulton, C., et al., A study of conduction band edge states in complex oxides by X-ray absorption spectroscopy. Radiation Physics and Chemistry, 2006. 75(11): p. 1934-1938.
59. Ou, D.R., et al., Oxygen vacancy ordering in heavily rare-earth-doped ceria. Applied physics letters, 2006. 89(17): p. 171911.
60. Bzowski, A., T. Sham, and Y. Yiu, Ag L-edge x-ray-absorption near-edge-structure study of charge redistribution at the Ag site in Au-Ag alloys. Physical Review B, 1994. 49(19): p. 13776.
61. Drube, W., et al., Sublifetime-resolution Ag L 3-edge XANES studies of Ag-Au alloys. Physical Review B, 1998. 58(11): p. 6871.
62. Nachimuthu, P., et al., The study of nanocrystalline cerium oxide by X-ray absorption spectroscopy. Journal of Solid State Chemistry, 2000. 149(2): p. 408-413.
63. Popović, Z., et al., Raman scattering on nanomaterials and nanostructures. Annalen der Physik, 2011. 523(1‐2): p. 62-74.
64. McBride, J., et al., Raman and x‐ray studies of Ce1− x RE x O2− y, where RE= La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994. 76(4): p. 2435-2441.
65. Nakajima, A., A. Yoshihara, and M. Ishigame, Defect-induced Raman spectra in doped CeO 2. Physical Review B, 1994. 50(18): p. 13297.
66. Taniguchi, T., et al., Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. The Journal of Physical Chemistry C, 2009. 113(46): p. 19789-19793.
67. Choudhury, B. and A. Choudhury, Lattice distortion and corresponding changes in optical properties of CeO 2 nanoparticles on Nd doping. Current Applied Physics, 2013. 13(1): p. 217-223.
68. Mu, C., J.-P. Zhang, and D. Xu, Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology, 2009. 21(1): p. 015604.