(3.235.139.152) 您好!臺灣時間:2021/05/08 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃智裕
研究生(外文):HUANG, CHIH-YU
論文名稱:以科技準備度與科技接受模式觀點探討LINE應用於美髮服務之影響
論文名稱(外文):The Perspectives of Technology Readiness and Technology Acceptance Model to Study the Effects of Applying LINE in Hair Salon Services
指導教授:莊寶鵰莊寶鵰引用關係
指導教授(外文):CHUANG, PAO-TIAO
口試委員:蘇明鴻劉信賢
口試委員(外文):SHU, MING-HUNGLIU, HSIN-HSIEN
口試日期:2017-06-15
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:亞太工商管理學系碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:161
中文關鍵詞:科技準備度科技接受模式LINE服務接觸美髮業
外文關鍵詞:Technology readinessTechnology acceptance modelLINEService encountersHair salon industry
相關次數:
  • 被引用被引用:2
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以科技準備度與科技接受模式之觀點,探討行動通訊軟體LINE應用於美髮服務時,消費者的感受與接受程度,以及消費者的科技準備度、知覺有用性、知覺易用性、使用態度與行為意向等研究構面之間的因果關係;並將消費者依科技準備度之高低程度分類後,比較各類集群的樣本特性與其在科技接受模式之研究構面上的差異,進而依各項研究結果研礙配適之策略以提高顧客的消費意願,並作為未來美髮業者引進科技服務之重要參考依據。

本研究採用實證分析的方法,以高雄地區的美髮業消費者為對象,經由問卷抽樣調查,回收有效問卷426份。並將回收的有效樣本運用統計軟體SPSS執行敘述性統計、集群分析、交叉分析與單因子變異數分析,以及統計軟體AMOS進行信效度分析、驗證性因素分析、結構方程模型分析與路徑分析。

研究結果發現:(1)消費者普遍認為 LINE應用於美髮服務是有用及易用的,且具有極高的使用意願與接受度;(2)LINE應用於美髮服務時,消費者的科技準備度對知覺有用性及知覺易用性有顯著正向影響、知覺易用性對知覺有用性有顯著正向影響、知覺有用性和知覺易用性對使用態度有顯著正向影響、使用態度對行為意向有顯著正向影響;(3)各類科技準備度集群之消費者在特性上顯現不同樣貌,對LINE應用於美髮服務之感受與接受程度,高低依序為科技創新者>科技接受者>科技落後者。

建議業者可在經營策略上對科技創新者與科技接受者兩類顧客加強推動LINE或其它科技導入之應用服務,並對科技落後者族群輔以更多人際方面的關懷與實體服務。


This research took the perspectives of Technology Readiness (TR) and Technology Acceptance Model (TAM) to investigate consumers’ perceptions and acceptance of applying mobile communication software LINE in hair salon services, as well as examine the causal relationships among consumers’ technology readiness, perceived usefulness, perceived ease of use, attitude toward using, and behavioral intention dimensions. By classifying consumers according to their Technology Readiness Index (TRI) scores, characteristics of the various clusters and their differences in each of the TAM dimensions were compared. Based on the results, suitable strategies to increase consumers’ purchase willingness were developed and proposed to hair salon service providers as references for the introduction of technological services.

This study adopted empirical analysis approach to sample consumers of hair salon by questionnaire survey in Kaohsiung. A total of 426 valid questionnaires were received. The SPSS was used to perform descriptive statistical analysis, cluster analysis, cross analysis, and one-way analysis of variance. In addition, another statistical software AMOS, was used to perform reliability and validity analysis, confirmatory factor analysis, structural equation modeling analysis, and path analysis.

Results showed:(1) consumers highly perceived that LINE was useful and easy to use when applied to hair salon services, and their willingness to use and acceptance of LINE were both extremely high;(2) when LINE was applied to hair salon services, consumer’s Technology Readiness (TR) had significantly positive effect on perceived usefulness and perceived ease of use, perceived ease of use had significantly positive effect on perceived usefulness, perceived usefulness and perceived ease of use had significantly positive effect on attitudes toward using, and attitudes toward using had significantly positive effect on behavioral intentions as well;(3) consumers in different TR clusters exhibited different characteristics;by prioritizing the clusters according to their perceptions toward using and their acceptance of using LINE for hair salon services, from high to low, it exhibited that technology innovators > technology recipients > technology laggards.

Hair salon service providers are encouraged to adopt strategies that can promote using LINE or introduce other technological applications to technology innovators and recipients, as well as those strategies that can provide supplementary interpersonal care and tangible services to technology laggards.


致 謝 I
中文摘要 II
英文摘要 III
目 錄 V
表目錄 VIII
圖目錄 X

第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 6
1.4 研究範圍與限制 7
1.5 研究流程 8

第二章 文獻探討 10
2.1美髮業概況 10
2.1.1 美髮業定義及發展沿革 10
2.1.2 美髮業經營型態 13
2.1.3 小結 14
2.2 行動應用軟體與LINE之發展概況 14
2.2.1 行動應用軟體 14
2.2.2 行動通訊軟體LINE 17
2.2.3 小結 21
2.3 科技應用於服務接觸 22
2.3.1 服務接觸之定義與概念 22
2.3.2 服務行銷金字塔 25
2.3.3 科技介入矩陣 28
2.3.4 以科技為基礎的服務 29
2.3.5 小結 31
2.4 科技準備度 32
2.4.1 科技準備度之理論基礎 32
2.4.2 科技準備度的分類 36
2.4.3 小結 38
2.5 科技接受模式 39
2.5.1 科技接受模式之理論基礎 39
2.5.2 科技接受模式之相關研究 43
2.5.3 科技接受模式各構面定義與研究假說發展 46
2.5.4 小結 49

第三章 研究方法 50
3.1 研究架構與研究假說 50
3.2 研究工具 52
3.2.1 變數定義與問卷設計 53
3.2.2 問卷預試 60
3.3 研究對象與資料蒐集方法 63
3.3.1 研究對象 63
3.3.2 抽樣方法 63
3.4 研究期程 64
3.5 資料處理與分析方法 66

第四章 資料分析與實證討論 72
4.1 敘述性統計分析 72
4.1.1 樣本結構分析 72
4.1.2 消費者之科技準備度與接受程度分析 75
4.2 驗證性因素分析 77
4.2.1 信度分析 77
4.2.2 常態性檢驗 78
4.2.3 檢驗違犯估計 80
4.2.4 檢驗測量模型配適度 84
4.2.5 檢驗組合信度與收斂效度 86
4.2.6 檢驗區別效度 95
4.3 結構模型分析與假說驗證 97
4.3.1 結構模型說明 97
4.3.2 檢驗結構模型適配度 98
4.3.3 路徑分析與假說檢定 101
4.4 科技準備度集群分類與分析 105
4.4.1 集群分析 105
4.4.2 TRI集群之樣本特性分析 107
4.4.3 TRI集群在TAM各構面之差異分析 111
4.5 綜合討論 114
4.5.1 LINE應用於美髮服務的知覺感受與接受程度 114
4.5.2 TRI與TAM各構面之因果關係 114
4.5.3 消費者的TRI程度分析與分類 116

第五章 結論與建議 118
5.1 研究結論 118
5.1.1 消費者對LINE應用於美髮服務的感受與接受程度 118
5.1.2 科技接受模式各研究構面間之因果關係 119
5.1.3 消費者科技準備度分類之探討 121
5.2 管理意涵 124
5.3 後續研究建議 126

參考文獻 127

附錄一 行動通訊軟體LINE應用於美髮服務之介紹 137
附錄二 研究問卷 143
附錄三 問卷各題項統計資料 147



一、中文部分

行政院主計處編印,2016,「中華民國行業標準分類」,第10版,台北。

朱維政、邱淑萍、陳秀足,2012,「利用德菲法進行美髮產業職場需求能力之研究」,設計教育學報,第3卷,第3期,29-42。

江明潔,2015,「以科技接受模式探討讀者使用資源探索服務的意願」,國立臺灣大學文學院圖書資訊學系碩士論文,台北。

何銘瓊,2014,「以科技接受模式及媒體豐富理論探討行動通訊軟體的用戶滿意度:以 LINE 為例」,中華大學資訊管理學系碩士論文,新竹。

吳孟男,2003,「科技介入服務接觸程度與顧客滿意度之關係」,國立嘉義大學管理研究所碩士論文,嘉義。

吳明隆,2005,「SPSS統計應用學習實務-問卷分析與應用統計」,台北:知城數位科技。

李國銑,1996,「影響台灣連鎖體系經營型態之選擇因素」,國立東華大學企業管理研究所碩士論文,花蓮。

沈美利,2010,「美髮業服務創新與行銷專案管理推動之研究」,國立高雄應用科技大學企業管理系碩士論文,高雄。

林靖文,2011,「運用科技準備度與科技接受模型探討公共圖書館使用者使用數位服務科技之意願-以國立臺中圖書館為例」,國立臺灣大學文學院圖書資訊學系碩士論文,台北。

林震岩,2007,「多變量分析:SPSS的操作與應用」,台北:智勝文化。

洪瑞敏,2001,「科技介入服務接觸之研究-以美髮服務業為例」,國立中山大學企業管理學系碩士論文,高雄。

范搌容,2015,「智慧型手機通訊軟體的使用者經驗之研究-以LINE為例」,世新大學資訊傳播學系碩士論文,台北。

凌儀玲,2000,「服務接觸中認知腳本之研究」,國立中山大學企業管理研究所博士論文,高雄。

高翊群,2007,「行動導覽服務使用者接受模式分析-創新擴散之觀點」,大同大學資訊經營研究所碩士論文,台北。

張劭勳,2004,「研究方法」,台中:滄海書局。

許瑞林,2011,「美髮沙龍創業一本通」,台灣:金塊文化。

郭裕元,2013,「以科技接受模式探討影響消費者使用智慧電動車意圖之要素」,國立成功大學工學院工程管理碩士在職專班碩士論文,台南。

陳華穗,2006,「美濃地區客家餐廳服務接觸與文化體驗之研究」,南台科技大學休閒事業管理研究所碩士論文,台南。

陳寬裕、王正華,2011,「論文統計分析實務:SPSS與AMOS的運用」,台北:五南圖書。

黃芳銘,2007,「結構方程模式理論與應用」,台北:五南圖書。

黃齡幼,2009,「以科技為基礎的服務接觸在電子化醫療照護系統之研究」,國立成功大學工業與資訊管理研究所碩士論文,台南。

楊東山,2016,「以科技接受模式探討旅遊者使用行動應用程式行為意圖之研究」,國立臺東大學進修部休閒事業管理組碩士論文,臺東。

詹慧珊、林容慧,2004,「美容美髮從業人員行業特性與工作倦怠之研究」,臺南女院學報,第23卷,第1期,181-206。

蔡文彬,2010,「以科技接受模式探討新式公共服務之接受度與滿意度-以高雄捷運為對象」,國立高雄師範大學人力與知識管理研究所碩士論文,高雄。

鄭宗昇,2012,「運用科技準備度與科技接受模型探討電子書使用意向之研究」,中華大學企業管理學系碩士論文,新竹。

鄭明萱譯,2006,「認識媒體:人的延伸(原作者:Marshall Mcluhan.)」,台北:貓頭鷹出版社,(原著出版年:1964,1994)。

賴志郎,2003,「消費者服務轉換過程選擇模式之研究-以美髮業為例」,國立高雄第一科技大學行銷與流通管理所碩士論文,高雄。

賴燊標,2007,「自助服務技術(SSTs)使用者接受度之研究—以航空公司報到自助服務櫃台為例」,國立台灣科技大學企業管理系碩士論文,台北。

謝孟岷,2012,「顧客認知公平對服務補救滿意度之影響-以電信服務業為例」,國立高雄大學亞太工商管理學系碩士論文,高雄。

鍾政宏,2012,「智慧型手機APP點餐程式應用於西式速食店之研究-以摩斯漢堡驗證科技接受模式」,美和科技大學經管研究所碩士論文,屏東。

簡競宇,2004,「人際型服務接觸與科技型服務接觸對關係利益之影響」,國立中興大學企業管理學系碩士論文,台中。

藍鴻文,2002,「服務接觸中科技介入之影響-以網路教學為例」,國立中山大學企業管理學系碩士論文,高雄。

龔琳晏,2015,「以科技接受模式探討使用行動旅遊資訊應用程式與地方依附關係之研究」,國立屏東科技大學高階經營管理碩士在職專班碩士論文,屏東。


二、英文部分

Ajzen, I. (1985), “From intentions to action: A theory of planned behavior. In J. Kuhl and J. Beckman (Eds.),” Action-control: From cognition to behavior, Heidelberg: Springer, 11-39.

Ajzen, I. and Fishbein, M. (1980), “Understanding attitudes and predicting behavior,” Englewood Cliffs. NJ: Prentice-Hall.

Ajzen, I. and Madden, T. J. (1986), “Prediction of goal-directed behavior: Attitudes, intentions and perceived behavioral control,” Journal of Experimental Social Psychology, 22(5), 453-474.

Anderson, J. and Gerbing, D. (1988), “Structural equation modeling in practice: A review and recommended two-step approach,” Psychological bulletin, 103(3), 411-423.

Andrew, L. (1994), “Using service incidents to identify quality improvement points,” International Journal of Contemporary Hospitality Management, 6(1,2) , 75-80.

Bagozzi, R. P. and Yi, Y. (1988), “On the evaluation of structural equation models,” Academic of Marketing Science, 16(1), 76-94.

Bentler, P. M. (1995), “EQS structural equations program manual,” Encino, CA: Multivariate Software.

Bitner, M. J. (1990), “Evaluating service encounter:The effects of physical surroundings and employee responses,” Journal of Marketing, 54(April) , 69-82.

Bitner, M. J., Brown, S. W. and Meuter, M. L. (2000), “Technology infusion in service encounters,” Journal of Marketing Science,28(1), 138-149.

Bollen, K. A. (1989), “Structural equations with latent variables,” John Wiley and Sons: New York.

Bollen, K. A. and Long, J. S. (1993), “Testing structural equation models,” Sage Publications, Newbury Park, CA.

Booms, B. H. and Bitner, M. J. (1981), “Marketing strategies and organ-izational structures for service firms,” in Marketing of Services, edus. J.H. Donnelly and W.R. George, Chicage: American Marketing Association, 53-60.

Brookshear, J. G. (2011), “Computer Science: An Overview,” 11th Edition, New York, 5-10.

Browne, M.W. and Cudeck, R. (1993), “Alternative ways of assessing model fit. In K. A. Bollen and J. S. Long (Eds.),” Testing structural equation models, Newbury Park, CA: Sage, 136-162.

Burke, R. R. (2002), “Technology and the customer interface:What consumers want in the physical and virtual store,” Journal of the Academy of Marketing Science, 30(4), 411-432.

Carlzon, J. (1987), “Moments of truth,” Cambridge, MA: Ballinger Publishing C0., 3.

Dabholkar, P. A. (1996), “Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality,” International Journal of Research in Marketing, 13, 29-51.

Dabholkar, P. A. and Bagozzi, R. P. (2002), “An attitudinal model of technology-based self-service: moderating effects of consumer traits and situational factors,” Journal of the Academy of Marketing Science, 30(3), 184-201.

Dabholkar, P. A. (1994), “Technology-based service delivery:A classification scheme for developing marketing strategies,” Advances in Service Marketing and Management, 30(3), 241-271.

Davis, F. D. (1986), “A technology acceptance model for empirically testing new end-user information systems: Theory and results,” Doctoral dissertation. Sloan School of Management, Massachusetts Institute of Technology.

Davis, F. D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Quarterly, 13(3), 319-340.

Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989), “User acceptance of computer technology: A comparison of two theoretical models,” Management Science, 35(8), 982-1003.

Fishbein, M. and Ajzen, I. (1975), “Belief, attitude, intention and behavior: An introduction to theory and research,” Reading, MA: Addison-Wesley Pub. Co.

Fornell, C. R. and Larcker, F. F. (1981), “Evaluating structural equation models with unobservable variables and measurement error,” Journal of Marketing Research, 18(1), 39-50.

Gefen, D., Straub, D.W. and Boudreau, M.C. (2000), “Structural equation modeling and regression: Guidelines for research and practice,” Communications of the Association for Information Systems, 4(7), 1-70.

Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998), “Multivariate data analysis (5th ed.) ,” New York: Macmillan.

Hansen, T., Jensen, J. M. and Solgaard, H. S. (2004), “Predicting online grocery buying intention: A comparison of the theory of reasoned action and the theory of planned behavior,” International Journal of Information Management, 24(6), 539-550.

Hayduk, L.A. (1987), “Structural equation modeling with LISREL: Essentials and advances,” Baltimore: Johns Hopkins University Press.

Hoffman, K. D., Scott W. K. and Holly M. R. (1995), “Tracking service failures and employee recovery efforts,” The Journal of Services Marketing, 9(2), 49-61.

Hu, L. and Bentle, P. M. (1999), “Gutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives,” Structural Equation Modeling, 6, 1-55.

James, L. R., Mulaik, S. A. and Brett, J. M. (1982), “Causal analysis: Assumptions, models, and data,” Beverly Hills, CA: Sage.

Jöreskog, K. G. and Sörbom, D. (1989), “LISREL7, a Guide to the Program and Applications,” SPSS Publications.

Karahanna, E., Straub, D. W. and Chervany, N. L. (1999), “Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs,” MIS Quarterly: Management Information Systems, 23(2), 183-213.

Kotler, P. (1994), “Marketing management: Analysis, planning, implemen-tation, and control,” 8th Ed, Englewood Cliffs, NJ: Prentice Hall.

Langeard, E., Bateson, J. E. G., Lovelock, C. H. and Eglier P. (1981), “Service marketing: New insights from consumer and managers,” Cambridge, Mass: Marketing science Institute, 81-104.

Lindberg, D. A. B. and Humphreys, B. L. (1995), “Computers in medicine,” Journal of the American Medical Association, 273(21) , 1667-1668.

Mardia, K. V. (1985), “Mardia's test of multinormality,” Encyclopedia of statistical sciences, 5, 217-221.

Meuter, M. L., Ostrom, A. L., Bitner, M. J. and Roundtree, R. (2003), “The influence of technology anxiety on consumer use and experiences with self-service technologies,” Journal of Business Research, 56(11), 899-906.

Meuter, M. L., Ostrom, A. L., Roundtree, R. I. and Binter, M. J. (2000), “Self-service technologies: Understanding customer satisfaction with technology-based service encounters,” Journal of Marketing, 64(3), 50-64.

Mick, D. G. and Fournier, S. (1998), “Paradoxes of technology: Consu-mer cognizance, emotions, and coping strategies,” Journal of Consumer Research, 25(2), 123-143.

Moon, J.W. and Y.G. Kim. (2001), “Extending the TAM for a World-Wide-Web context,” Information and Management, 38, 217-230.

Morris, M.G. and Dillon, A. (1997), “How user perceptions influence software use, decision support systems,” IEEE Software, 58-65.

Mulaik, S.A., James, L.R., Van Alstine, J., Bennet, N., Lind, S. and Stilwell, C.D. (1989), “Evaluation of Goodness-of-Fit Indices for Structural Equation Models,” Psychological Bulletin, 105 (3), 430-45.

Nasution, R.A., Rudito, P. and Syaharuddin, Z. (2007), “Technology readiness characteristics of 3G subscribers in Indonesia - A preliminary study,” IEEE Proceeding of Portland International Conference on Management of Engineering and Technology, 7(16), 891-898.

Ngai, E.W.T., Poon, J.K.L. and Chan, Y.H.C. (2007), “Empirical examination of the adoption of WebCT using TAM,” Computers and Education, 48(2), 250-267.

Nunnally, J. (1978), “ Psychometric Theory,” New York: McGraw-Hill.

Parasuraman, A. (1996), “Understanding and leveraging the role of customer service in external, interactive and internal marketing,” Paper presented at Frontiers in Service Conference, Nashville, TN, October.

Parasuraman, A. (2000), “Technology readiness index (TRI): A multiple-item scale to measure readiness to embrace new technologies,” Journal of Service Research, 2(4), 307-320.

Parasuraman, A. and Colby, C. (1998), “A scale for measuring customers’ technology readiness: Replication, refinement and implications for service organizations,” Frontiers in Service Conference, New Orleans.

Parasuraman, A. and Colby, C. (2001), “Techno-ready marketing: How and why your customers adopt technology,” NY: The Free Press.

Parasuraman, A. and Grewal, D. (2000), “The impact of technology on the quality-value-loyalty chain: A research agenda,” Journal of Academy of Marketing Science, 28(1), 168-174.

Parasuraman, A., Zeithaml, V.A. and Berry, L. L. (1985), “A conceptual model of service quality and its implications for future research,” Journal of Retailing, 64(1), 12-40.

Pavlou, P. A. and Fygenson, M. (2006), “Understanding and predicting electronic commerce adoption: An extension of the theory of planned behavior,” Management Information Systems Quarterly, 30(1), 115-143.

Porter, M. E. and Millar, V. E. (1985), “How information give you competitive advantage,” Harvard Business Review, 63(4), 149-160.

Sachs, W. S. and Elston, F. (1994), “The information technology revolution in financial services,” Probus Publishing Co., Chicago, IL.

Shostack, G. L. (1985), “Planning the service encounter,” in J. A. Czepiel, M. R. Solomon, and C. F. Surprenant (Eds), The Service Encounter, Lexington, MA: Lexigton Books, 243-254.

Smith, A. K., Ruth N. B. and Janet, W. (1999), “A model of customer satisfaction with service encounters involving failure and recovery,” Journal of Marketing Research, 36(3), 356-372.

Solomon, M. R., Surprenant, C., John A. Czepiel, J.A. and Gutman, E. G. (1985), “A role theory perspective on dyadic interactions: The service encounter,” Journal of Marketing, 49(1), 99-111.

Surprenant, C. F. and Solomon, M. R. (1987), “Predictability and person-alization in the service encounter,” Journal of Marketing, 51(2), 86-96.

Szajna, B. (1996), “Empirical evaluation of the revised technology acceptance model,” Management Science, 42(1), 85-92.

Tax, S. S. and Brown, S.W. (1998), “Recovering and learning from service failure,” Sloan Management Review, 40(1), 75-88.

Taylor, S. and Todd, P.A. (1995), “Assessing IT usage: The role of prior experience,” MIS Quarterly, 19(4), 561-570.

Taylor, S. and Todd, P.A. (1995), “Understanding information technology usage: A test of competing models,” Information Systems Research, 6(2), 144-176.

Torkzadeh, G., Koufteros, X. and Pflughoeft, K. (2003), “Confirmatory analysis of computer self-efficacy,” Structural Equation Modeling, 10(2), 263-275.

Tsikriktsis, N. (2004), “A technology readiness-based taxonomy of customers,” Journal of Service Research, 7(1), 42-52.

Van Dolen, W. M. and Ruyter, K. D. (2002), “Moderated group chat: An empirical assessment of a new e-service encounter,” International Jounal of Service Industry management, 13(5), 496-511.

Victorino, L., Karniouchina, E. and Verma, R. (2009), “Exploring the use of the abbreviated technology readiness index for hotel customer segmentation,” Cornell Hotel and Restaurant Administration Quarterly, 50(3), 342-359.

Walczuch, R., Lemmink, J. and Streukens, S. (2007), “The effect of service employee's technology readiness on technology acceptance,” Information and Management, 44(2), 206-215.

Walker, R. H., Craig-Lees, M., Hecker, R. and Francis, H. (2002), “Tech-nology-enabled service delivery: An investigation of reasons affecting customer adoption and rejection,” International Journal Service Industry Management, 13(1), 91-106.

Weun, S., Beatty, S. E. and Jones, M. A. (2004), “The impact of service failure severity on service recovery evaluations and post-recovery relationships,” Journal of Services Marketing, 18(2), 133-46.

Williams, L. J. and Hazer, J. T. (1986), “Antecedents and consequences of satisfaction and commitment in trunover models: A reanalysis rising latent variable structrual equation methods,” Journal of Applied Psychology, 71(2), 219-231.

Wu, I. L. and Chen J. L. (2005), “An extension of Trust and TAM model with TPB in the initial adoption of on-line tax: An empirical study,” International Journal of Human - Computer Studies, 62(6), 784-808.

Yi, M. Y., Jackson, J. D., Park, J. S. and Probst, J. C. (2006), “Understanding information technology acceptance by individual professionals: Toward an integrative view,” Information and Management, 43(3), 350-363.

Yi, Y., Tung, L. L. and Wu, Z. (2003), “Incorporating technology readiness (TR) into TAM: Are individual traits important to understand technology acceptance,” Diffusion Interest Group in Information Technology (DIGIT) Workshop, Seattle, December 14.

Zeithaml, V.A., Parasuraman, A. and Malhotra, A. (2002), “Service quality delivery through web sites: A critical review of extant knowledge,” Journal of the Academy of Marketing Science, 30(4) , 362-375.


三、網站資料

LINE台灣官方BLOG,2017,「LINE Pay使用教學大補帖」,2017年1月31日,取自http://official-blog.line.me/tw/archives/39016757.html。

LINE官方網站,2017,「LINE台灣官方網站首頁」,2017年1月30日,取自https://line.me/zh-hant/。

行政院主計總處官方網站,2017,「全國統計資料」,2017年5月17日,取自https://www.dgbas.gov.tw/mp.asp?mp=1。

洪懿妍、李欣岳、楊倩蓉,2014,「Facebook 和 LINE 這樣用,業績、效率三級跳 」, Cheers雜誌164期,2017年1月12日,取自http://www.cheers.com.tw/article/article.action?id=5057972。

陳敬哲,2017,「2016年APP關鍵回顧報告,通訊類使用時間飆升」,2017年1月29日,取自http://www.nownews.com/n/2017/01/29/2383840。

曾靉,2016,「1,700萬台灣人都在用!三張圖看LINE的使用者分析」,2017年1月30日,取自https://www.bnext.com.tw/article/41433/line-user-in-taiwan-is-more-than-90-percent。

楊政霖,2013,「行動生活三大導向:娛樂、均衡、工作」,2017年1月29日,取自https://mic.iii.org.tw/micnew/IndustryObservations_PressRelease02.aspx?sqno=325。

資策會FIND,2014,「IDEAS Week 2014系列活動-FIND Day創新講堂」2017年1月30日,取自http://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1379&fm_sqno=14。

資策會FIND,2014,「驚!每人每日有1/8醒著的時間都在使用APP!」,2017年1月10日,取自http://www.iii.org.tw/Press/NewsDtl.aspx?nsp_sqno=1476fm_sqno=14#。

資策會產業情報研究所(MIC),2016,「《行動APP消費者調查》台灣手機用戶平均每人下載16個APP」,2017年1月29日,取自https://mic.iii.org.tw/micnew/IndustryObservations_PressRelease02.aspx?sqno=424。

蘇文彬,2015,「資策會調查:國內行動裝置用戶已超過1600萬」,2017年1月10日,取自http://www.ithome.com.tw/news/97479。

電子全文 電子全文(網際網路公開日期:20220703)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 科技準備性與服務便利性對使用科技基礎服務影響之研究-以第三代行動通訊為例
2. 影響消費者對自助服務科技接受度之研究-以連鎖便利商店內多媒體資訊站為例-
3. 創新產品與服務特性、消費者個人特徵對知覺價值和態度影響之研究─以數位電視與電子現金為例
4. 由國小教師運用資訊科技融入教學分析其科技準備度(TRI)及科技接受模式(TAM)之研究
5. 人際型服務接觸與科技型服務接觸對關係利益之影響
6. 網路口碑與沉迷經驗對線上遊戲持續使用意圖之研究-以科技準備度為干擾變數
7. 運用科技準備度與科技接受模型探討公共圖書館使用者使用數位服務科技之意願-以國立臺中圖書館為例
8. 整合科技準備度、TAM與TPB模式探討自助服務科技之持續使用意向
9. 科技介入服務接觸程度與顧客滿意度之關係
10. 科技準備度與科技接受模式之整合與延伸—以智慧型手機為例
11. 國中教師使用即時通訊軟體進行親師溝通之行為意圖及滿意度研究
12. 以科技接受模型探討智慧手機消費者對以科技接受模型探討智慧手機消費者對行動加值應行動加值應用服務的購買行為之研究
13. 從科技準備與適配觀點探討影響國小教師使用互動式電子白板教學之因素
14. 以科技準備與科技接受模型來衡量消費者對於電子化服務接受度之研究-以美國與台灣消費者為例
15. 科技準備性與服務便利性對行動商務使用行為之研究-以第三代行動服務為例
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔