跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾文宏
研究生(外文):ZENG, WEN-HONG
論文名稱:醚基壓克力共聚物於封裝黏著及血液相容材料之應用
論文名稱(外文):Applications of packaging adhesives and blood compatible materials via ether-based acrylate copolymers
指導教授:鍾宜璋鍾宜璋引用關係
指導教授(外文):CHUNG, YI-CHANG
口試委員:劉瑞祥林睿哲吳昭燕
口試委員(外文):LIU, JUI HSIANGLIN, RUEI JEWU, JHAO YAN
口試日期:2017-06-21
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:184
中文關鍵詞:醚基壓克力共聚物太陽能封裝黏著脫水架橋正電共聚高分子血液相容材料
外文關鍵詞:Ether-based acrylate copolymerpackaging adhesivedrhydration and crosslinkingpositive charge copolymerblood compatible materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
共聚合為一種藉由分子設計以提供更多的高分子種類及選擇,大大地擴充了高分子應用的常見方法之一。本研究擬採用具高柔軟性,高透明性,高耐熱性及高生物相容性之醚基壓克力單體MIPA分別與不同功能性之單體進行共聚合,於MIPA中賦予特定官能基並應用於太陽能封裝黏著及血液相容材料。
為了改善太陽能封裝材料長期遭受紫外光照射下易產生黃變及老化等問題,本研究將MIPA與醋酸乙烯酯vinyl acetate (VAc)進行共聚,可於醇解後產生適當的-OH官能基,除了有助於提升封裝材料與太陽能電池組件之黏著力外,更可藉由高溫烘烤時,造成脫水架橋反應進而提升共聚物之交聯密度。接著將共聚物進行太陽能封裝材料之性質測試,分析相關物性和封裝特性,評估取代現有太陽能晶片模組封裝材料的可能性。結果發現,在UV光的照射或恆溫恆濕的環境下,我們的共聚物封裝之穿透度皆>90%,均展現良好的透光度,且無黃變的現象產生,玻璃與背板TPT間的剝離強度亦從9.2 N/cm提升至26.6 N/cm。
另一方面,自體血小板濃厚液(Platelet-rich plasma, PRP)已被廣泛的應用於醫療當中,但傳統離心機所分離之血小板濃厚液,因濃度不易被控制,其變異量容易隨著捐贈者之血小板濃度而有所差別。因此本研究中欲利用甲基丙烯酸二甲氨乙酯(DMAEMA)作為正電荷基團單體,與不同碳鏈長度之醚基壓克力單體進行共聚,探討相同正電基團比例下,共聚物之碳鏈長度對於血小板吸附的影響。在血液吸附材料的評估中,血小板抓取效果以PIC6為最佳,並藉由醚基壓克力單體之高柔軟性質及良好成膜性,可將PIC6塗佈於2D及3D基材表面,並設計出一種濃度可控式血小板濃厚液之分離裝置,達到濃縮血小板的效果,且血小板濃度變異量能控制在15%以內,達到PRP之濃度可控的目的。




關鍵字:醚基壓克力共聚物、太陽能封裝黏著、脫水架橋、正電共聚高分子、血液相容材料。


Copolymerization is a common method for widely extending the applications of polymer via molecular design to provide more species and options. In this study, ether-based acrylic monomer, called as MIPA, with high flexibility, high transparency, high heat resistance and high biocompatibility was used to copolymerize with different functional monomers to introduce specific functional groups and can be applied on solar cell packaging adhesives and blood compatible materials, and so on. We focused on the first two applications and discussed their preparation and applicable benefits.
In order to improve the long-term exposure under ultraviolet light for the solar cells, the packaging materials should be designed to endure yellowing and aging problems. In this study, MIPA and vinyl acetate (VAc) can be copolymerized to produce a copolymer with appropriate -OH functional groups after alcoholysis. The copolymer provides not onlyenhanced adhesion between packaging layers and solar cell components, but also increase the crosslinking density of packaging via dehydrated reaction after roasting at a high temperature. The physical properties and packaging viability of the copolymer were measured for the solar cell packaging, and found some better niche points to replace EVA. The results showed that the transparency of the copolymeris greater than 90%, no matter under UV irradiation or in a humid environment for a long time, displaying no yellowing happened. The peeling strength can be increased from 9.2 N/cm to 26.6 N/cm between a glass and TPT sheet.
As for the other application, the autogenic platelet-rich plasma (PRP) is widely used to apply on the medical therapies, but the concentration of PRP cannot be well-controlled in and between different patients’ blood samples via centrifugation. The variation is also caused in a donator’s platelet concentrations. In this study, we used DMAEMA as a positively-charged monomer to copolymerize with different lengths of carbon chain of ether-based acrylic monomer to prepare positively-charged copolymers with different interactive properties toward platelets. We discussed the effect of the carbon chain lengths of the copolymers on platelet adsorption under the same positive group ratio. In the blood cell adhesion experiments, we found the sample, PIC6, has stronger adhesion to platelets. Through highly-soft property and well film-forming for the ether-based acrylic monomer, we can easily coat PIC6 on a 2D and a 3D substrates to design a novel device which can control the concentrations of PRP samples among different patient’s blood within 15% of variation. It is expected to improve the problems of PRP collection devices, including high cost and large variation of PRP concentrations over those using traditional centrifugation methods.


Key words : Ether-based acrylate copolymer、packaging adhesive、drhydration and crosslinking、positive charge copolymer、blood compatible materials.

謝誌 I
摘要 IV
Abstract V
目錄 VII
圖目錄 XI
表目錄 XVI
第一章、 緒論 1
1.1前言 1
1.1.1共聚物 1
1.1.2醚基壓克力單體(MIPA) 3
1.2 研究動機 5
第二章、文獻回顧 7
2.1共聚物材料之優勢與聚合方法 7
2.1.1 共聚物之優勢 7
2.1.2 共聚物之種類 13
2.1.3自由基聚合之機制與方法 15
2.2太陽能封裝材料 20
2.2.1 太陽能電池模組的簡介 20
2.2.2 EVA封裝膜之特性 24
2.2.3 EVA封裝膜黃變及其機制 26
2.3血液接觸材料 31
2.3.1 血液之組成 31
2.3.2 血液相容性材料 33
2.3.3 血液與材料表面的交互關係 37
2.3.4帶電高分子於血液接觸材料的應用 42
2.3.5血小板濃厚液於醫療上的用途 52
第三章、實驗方法 56
3.1 實驗架構 56
3.2 實驗藥品與儀器 57
3.2.1實驗藥品 57
3.2.2實驗儀器 59
3.3封裝黏著實驗步驟 63
3.3.1太陽能封裝材料合成 63
3.3.2 共聚物之薄膜製備 66
3.3.3 黏性拉伸測試 67
3.3.4 共聚物之交聯率測試 70
3.3.5 水氣穿透率測試 71
3.3.6 穿透度測試 71
3.3.7 封裝元件進行加速老化之黏著性及透光度測試 72
3.4血液相容材料實驗步驟 73
3.4.1血液吸附材料合成與測試實驗步驟 73
3.4.2 共聚物高分子塗層之親疏水特性比較 74
3.4.3 共聚物塗層之溶出測試 75
3.4.4 體外細胞毒性測試 76
3.4.5 全血(Whole blood cells)與共聚物塗層之培養 77
3.4.6 血小板吸附樹脂於2D金屬網/3D分離棉之表面改質 78
3.4.7 2D濾網之血小板抓取測試 79
3.4.8 3D多孔性材料於血漿快速分離實驗 80
3.4.9 濃度可控式血小板分離裝置 81
第四章、醚基壓克力共聚物於封裝黏著之結果與討論 84
4.1 共聚物之化學成分鑑定及性質分析 84
4.2 共聚物交聯度測試 103
4.3 共聚物經加熱交聯前後之熱性質分析 104
4.4 共聚物薄膜於太陽能電池封裝測試 108
4.5封裝元件之黏性拉伸測試與玻璃強度測試 109
4.6 封裝元件之穿透度測試 111
4.7 封裝元件之尺寸安定性測試 112
4.8 封裝元件之吸濕性測試 113
4.9 長時效UV光照射老化之穿透度及黏性測試 114
4.10恆溫恆濕試驗老化之穿透度及黏性 116
4.11 長時效UV光照射老化之封裝元件吸濕性測試 118
第五章、醚基壓克力共聚物於血液相容材料之結果與討論 122
5.1 共聚物之化學成分鑑定及性質分析 122
5.2共聚物塗層之親疏水特性比較 124
5.3共聚物塗層之溶出試驗 126
5.4共聚物塗層之體外細胞毒測試 127
5.5全血細胞吸附實驗結果 129
5.6 血小板吸附樹脂於2D金屬網/3D分離棉之表面改質 136
5.7 2D濾網之血小板抓取測試 141
5.8 3D多孔性材料於血漿加速分離實驗 145
5.9 濃度可控式血小板分離裝置 151
5.10 生長因子測試 156
第六章、結論 158
參考文獻 161


1.徐玲, “高分子化學”, 2007
2.陳昱勝, “高瞻自然科學資源平台”, 2013
3.Painter P. C, Coleman M. M., “Fundamentals of Polymer Science, CRC Press”, 1997
4.D. Xiong, G. Liu, L. Hong, “Superamphiphobic Diblock Copolymer Coatings”, 2011
5.胡朝景, “親水疏水微相分離形接枝共聚物作為高分子分離膜之合成與物性”, 1980
6.Y. Feng, H. Zhao, M. Behl, A. Lendlein, J. Guo, D. Yang, “Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility”, 2013
7.Chang, S. H. Shu, Y.J. Shih, C. W. Chu, R. C. Ruaan, W. Y. Chen, “Hemocompatible Mixed-Charge Copolymer Brushes of Pseudozwitterionic Surfaces Resistant to Nonspecific Plasma Protein Fouling”, 2010
8.K. Ishihara, T. Ueda, N. Nakabayashi, “Preparation of Phospholipid Polymers and Their Properties as Polymer Hydrogel Membranes”, Polymer Journal, 1990
9.H. R. Allcock, F. W. Lampe, "Contemporary Polymer Chemistre, 2nd Ed." Prentice-Hall, New Jersey, 1990.
10.張品全, “科學發展”, 2002
11.太陽能封裝材介紹 (DuPont™)
12.太陽能模組介紹 (聚恆科技)
13.太陽能模組介紹 (錸德科技)
14.Wohlgemuth J. H., Petersen R. C., Kempe M.D. , “Sol. Energy Mater Sol. Cells”, 2010
15.太陽能封裝材介紹 (DuPont™)
16.L. Feng, Z. Jun, Li C. H., X. Zeng, “Progress of the Encapsulants for Photovoltaic Modules”, Chinese Journal of Inorganic Chemistry, 2012
17.Agrouia. K, Collins. G, “Energy Mater. Sol. Cells”, 2003
18.太陽能封裝材介紹 (DuPont™)
19.太陽能模組EVA膜介紹(慶生科技)
20.Pern F. J., “Macromol Mater Eng”, 1997
21.張品全, “科學發展”, 2002
22.Pern F. J., “Macromol Mater Eng”, 1997
23.TexSolar 產品太陽能電池封裝膜 EVA Film (德淵科技產品介紹)
24.太陽能模組EVA膜介紹(慶生科技)
25.http://www.8tiny.com/g1yReA8j/
26.太陽能模組EVA膜介紹(慶生科技)
27.Moriau. M, “The physiological mechanisms of haemostasis – Blood Platelets” Hologramme Ed., Neuilly-sur-Seine, 1988
28.Chen Q. Z., S. E. Harding, N. N. Ali, A. R. Lyon, A. R. Boccaccini, Biomaterials in cardiac tissue engineering, “Ten years of research survey”, Materials Science & Engineering R-Reports, 2008
29.Padera R. F., Schoen, F. J. , “Cardiovascular medical devices - An introduction to materials in medicine”, Biomaterials Science, Elsevier, 2004
30.Gorbet M. B., M. V. Sefton, “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes”, Biomaterials, 2004.
31.Hanson S. R., Blood coagulation and blood-materials interactions,” An introduction to materials in medicine”, Biomaterials Science, Elsevier, Academic Press, 2004
32.Erwin A. Vogler, “Structure and reactivity of water at biomaterial Surfaces”, Advances in Colloid and Interface Science, 1998
33.Matthew P. Goertz, J. E. Houston, and X.-Y. Zhu, “Hydrophilicity and the Viscosity of Interfacial Water”, 2007
34.C. A. Johnson, P. Wu, and A. M. Lenhoff, “Electrostatic and van der Waals Contributions to Protein Adsorption: 2. Modeling of Ordered Arrays”, 1994
35.Z. Zhang, T. Chao, S. Chen, S. Jiang, “Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Gass Slides”, Langmuir, 2006
36.Hunter R., “Foundations of Colloid Science”, vol. I. Oxford Science Publications, 1989
37.Euridice P. Vieira, Sandra Rocha, M. Carmo Pereira, Helmuth Möhwald, Manuel A. N. Coelho, “Adsorption and diffusion of plasma proteins on hydrophilic and hydrophobic surfaces: effect of trifluoroethanol on protein structure”, 2009
38.Mao C., A. P. Zhu, Y. Z. Qiu, J. Shen, S. C. C. Lin, “Introduction of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent to silicone rubber film by radiation grafting and its blood compatibility”, Colloids and Surfaces B-Biointerfaces, 2003
39.S. Morisada, K. I. Namazuda, S. Suzuki, N. Kikuchi, H. Kanda, Y. Hirokawa, Y. Nakano, “Temperature-Swing Adsorption of Proteins in Water Using Cationic Copolymer-Grafted Silica Particles”, 2011
40.C. Y. Li, W. Yuan, H. Jiang, J. S. Li, F. J. Xu, W. T. Yang, J. Ma, “PCL film surfaces conjugated with P(DMAEMA)/gelatin complexes for improving cell immobilization and gene transfection”, 2011
41.徐秀娟, “智能型仿羧基甜菜鹼之血液相容性混合電荷水凝膠”, 2013.
42.Liu X, Huang R, Su R, Qi W, Wang L, He Z, “Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors”, 2014
43.Young H. K., Dong K. H., Ki D. P., Soo H. K., “Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept”, 2003
44.薛敬和, “生命科學與工程 第二版”, 2012
45.Andrew L. Lewis, “Phosphorylcholine-based polymers and their use in the prevention of biofouling”, Colloids and Surfaces B: Biointerfaces, 2000
46.Z. Zhang, T. Chao, S. Chen, S. Jiang, “Superlow Fouling Sulfobetaine and Carboxybetaine Polymers on Gass Slides”, Langmuir, 2006
47.Y. Iwasaki, K. Ishihara, “Phosphorylcholine-containing polymers for biomedical applications”, Anal Bioanal Chem, 2005
48.T. Burnouf, D. Strunk, Mickey B.C. Koh, “Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation”, Biomaterials, 2016
49.R. Somani, I. Zaidi, S. Jaidka, “Platelet Rich Plasma-A Healing Acid and Perfect Enhancement Factor Review and Case Report”, Jaypee Journals, 2011
50.Erin K. Hanson, J. Ballantyne, “A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the Age, Time Since Deposition of Dried Bloodstains”, 2010
51.溫尚樺, 鍾宜璋, “帶正電共聚物之合成、分析及其作為血液吸附材料之評估” , 2015.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top