跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳晉賢
研究生(外文):CHEN, JIN-SIAN
論文名稱:熱機械製程對新型β鈦合金之結構與機械性質影響研究
論文名稱(外文):Effects of thermo-mechanical processing on microstructures and mechanical properties of beta Ti alloy
指導教授:何文福
指導教授(外文):HO, WEN-FU
口試委員:許學全吳世經
口試委員(外文):HSU, HSUEH-CHUANWU, SHIH-CHING
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:鑄造β Ti合金熱機械製程相轉變
外文關鍵詞:as cast β Ti alloythermal-mechanical processingphase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗中,探討鑄造β Ti合金合金經一系列熱機械製程之相/晶體結構、微結構、機械性質。實驗結果顯示,經冷軋延製程之試片(CR1、CR2、CR3),其β等軸晶隨軋延量的提升而逐漸拉長,也發現軋延過程會導致應力誘發相(α″和ω)及機械雙晶的產生,以及經冷軋延處理,強度均得到提升,CR1及CR2小幅度提升,CR3強度提升最為明顯,上升28%,且保有低彈性模數(53 GPa),而以冷軋延試片進行不同溫度的時效熱處理,能發現結果顯示HQ2的時效熱處理強度提升最為明顯,此原因為ωiso相的析出,彈性模數也因此相之析出大幅上升,在HQ3的時效熱處理能發現無ω相及α相的析出,以及發現較大變形量的位置,所析出之α相,其尺寸較細,由彎曲強度/彈性模數比值的1000倍,來評估此製程在單位彈性模數下強度提升了多少幅度,其中HQ1及HQ2比值(25.3、26.7)較高,相較鑄造β Ti合金(20.1)。
In this study, we investigated the phase/crystal structure, microstructure and mechanical properties of the as cast β Ti alloy which was via thermal-mechanical processing. The experimental results showed that the equiaxed β grain of as cast β Ti alloy was elongated with increasing the redutction of cold rolling. We also found that the stress-induced phase (α″ and ω) and mechanical twinnig have been generated by cold rolling process, and the strength of cold rolled sample increased. CR1 and CR2 had a slight increase, CR3 increased the most (28%), and the elastic modulus was kept low (53 GPa). However, the cold rolled samples were aged with different temperature. The result indicated that both of the strength and elastic modulus were significantly enhanced because of ωiso phase participation. The participation α phase was observed, and the size of participation α phase decreased gradually with increasing deformation. The strength/ modulus ratio (×1000) was used to evaluate a strength increment of one modulus. The ratio of HQ1 (25.3) and HQ2 (26.7) are higher than another sample.
摘要...I
目錄...III
圖目錄...VI
表目錄...IX
第一章 前言...1
1.1 導言...1
1.2 研究動機與目的...5
第二章 理論基礎與文獻探討...6
2.1 純鈦及鈦合金...6
2.1.1 純鈦介紹...6
2.1.2 鈦合金分類...7
2.1.3 變形模式...7
2.2 合金元素添加效應...8
2.2.1 α穩定元素...8
2.2.2 β穩定元素...9
2.2.3 中性元素...9
2.3 麻田散體(martensite)...12
2.3.1 麻田散體(α′和α″)...12
2.3.2 麻田散體(Ti-Nb合金中的α″)...14
2.3.3 麻田散體(ω)...18
2.4 應力誘發麻田散體(SIM)之鈦合金設計理論...19
2.4.1 鉬當量...19
2.4.2 Bo–Md理論...21
2.5 應力對介穩β相(metastable β phase)的影響...25
2.5.1 應力誘發相變麻田散體...25
2.5.2 應力應變曲線特徵...25
2.5.3透過應力誘發的麻田散體增強晶粒細化作用...28
2.5.4 介穩β相中的機械雙晶...30
第三章 實驗方法與步驟...31
3.1 實驗使用相關設備...31
3.2 實驗流程...32
3.3 試片製備...32
3.3.1 合金配置...32
3.3.2 熔煉及鑄造...34
3.3.3 冷軋延處理...39
3.3.4 熱機械製程處理...41
3.4 相分析與顯微觀察...42
3.4.1 XRD繞射分析...42
3.4.2 金相顯微組織觀察...42
3.5 機械性質分析...43
3.5.1 微硬度分析...43
3.5.2 三點彎曲試驗...44
3.5.3 彈性回復能力...44
第四章 結果與討論...46
4.1 XRD繞射分析...46
4.2顯微組織觀察...49
4.3 彎曲強度分析...54
4.4 彈性模數分析...58
4.5 彈性回復能力...60
4.6 微硬度分析...62
4.7 熱機械製程之評估...63
第五章 結論...64
第六章 參考文獻...65




[1]Niinomi M, Hattori T, Morikawa K, Kasuga T, Suzuki A, Fukui H, Niwa S. Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 43:2970-2977, 2002.
[2]Head WC, Bauk DJ, Emerson Jr RH. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop Relat Res 311:85-90, 1995.
[3]Dowson D. Bio-tribology of natural and replacement synovial joints. In: Mow VC, Ratcliffe A, Woo SL-Y, editors. Biomechanics of diarthrodial joints, vol. II. Chap. 29. New York:Springer, 1992:305-345.
[4]Long M, Rack HJ. Titanium alloys in total joint replacement-a materials science perspective. Biomaterials 19:1621-1639, 1998.
[5]Semlitsch M, Willert HG. Properties of implant alloys for artificial hip joints. Med Biol Eng Comput 18:511-520, 1980.
[6]Li JCM. Microsctructure and properties of materials. World Scientific 2:49-55, 2000.
[7]Boyer B, Welsch G, Collings EW Materials Properties Handbook: Titanium Alloys (fourth ed.). ASM International. 790-810, 2007.
[8]Narayan R. Materials for medical devices, fundamentals of medical implant materials. ASM Handbook. 23:6-16, 2012.
[9]Ho WF, Ju CP, Chern JH. Structure and properties of cast binary Ti-Mo alloys. Biomaterials 20:2115-2122, 1999.
[10]Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. Acta Orthop Scand Suppl 64:1-58, 1993.
[11]Callaghan JJ. Current concerts review: the clinical results and basic science of total hip arthroplasty with porous-coated prostheses. J Bone Joint Surg 75A:299-310, 1993.
[12]Ho WF, Hsu HC, Wu SC, Hsu SK, Syu JY. The structure and mechanical properties of as-cast Ti-25Nb-xSn alloys for biomedical applications. Mater Sci Eng A 568:1-7, 2013.
[13]Zheng YF, Wang BL, Wang JG, Li C, Zhao LC. Corrosion behaviour of Ti-Nb-Sn shape memory alloys in different simulated body solutions. Mater Sci Eng A 438-440:891-895, 2006.
[14]Yamada N, Miura k, Itoi E, Hanada S, Jung TK. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus. Acta Biomater 7:2320-2326, 2011.
[15]Lütjering G, Williams JC. Titanium. 2nd. Springer 2007. p.16
[16]Murray JL. Phase Diagrams of Binary Titanium Alloys. ASM International. 1-4, 1987.
[17]Niinomi M. Recent metallic materials for biomedical applications. Met Mater Trans A 33A:477-486, 2002.
[18]Rosenberg HW. The Science, Technology and Application of Titanium, Pergamon Press. 851, 1970.
[19]Collings EW, Physical Metallurgy of Titanium Alloys (American Society of Metals, Materials Park, Columbus, OH, 1984).
[20]Moffat DL, Larbalestier DC. The competition between the alpha and omega phases in aged titanium-niobium alloys. Metall. Trans. A 19A:1687, 1988.
[21]Brown, ARG, Clark, D, Eastabrook, J. Ti-Nb system. Nature 201:914, 1964.
[22]Young M, Levine E, Margolin H. The aging behavior of orthorhombic martensite in Ti-6-2-4-6. Metall. Trans 5:1891-1898, 1974.
[23]Sugimito T, Komatsu S, Kamei K, Yoshida H, Murakami Y, in Titanium 80: Science and Technology, edited by H. Kimura and O. Izumi. The Metals Society, The American Institute of Mining. Metallurgical and Petroleum 1980 , p. 2981.
[24]Sasano H, Suzuki T, Naka O, Kimura H. Science and Technology 1980, p. 717.
[25]Singh AK, Ramachandra C, Tavafoghi M, Singh V. Structure of martensite in titanium alloy Ti-6Al-1.6Zr-3.3Mo-0.3Si. J. Mater. Sci. Lett 12:697, 1993.
[26]Geetha M, Singh AK, Muraleedharan K, Gogia AK, Asokamani R. Effect of thermomechanical processing on microstructure of a Ti-13Nb-13Zr alloy. J. Alloys Compd 329:264, 2001.
[27]Geetha M, Singh AK, Gogia AK, Asokamani R. Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys. J. Alloys Compd 384:131, 2004.
[28]Davis R, Flower HM, West DRF. Martensitic transformations in titanium-molybdenum alloys. J. Mater. Sci 14:712, 1979.
[29]Bywater KA, Christian JW. Philos. Mag 25:1249, 1972.
[30]Mantani Y, Tajima M. Phase transformation of quenched α″ martensite by aging in Ti-Nb alloys. Mater. Sci. Eng. A 438-440:315-319, 2006.
[31]Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S. Phase transformation of quenched α″ martensite by aging in Ti-Nb alloys. Acta Mater 54:2419, 2006.
[32]Min XH, Emura S, Zhang L, Tsuzaki K. Effect of Fe and Zr additions on ω phase formation in β type Ti-Mo alloys. Mater. Sci. Eng. A A497:74, 2008.
[33]Sugimito T, Komatsu S, Kamei K, Yoshida H, Murakami Y, in Titanium 80: Science and Technology, edited by H. Kimura and O. Izumi. The Metals Society, The American Institute of Mining. Metallurgical and Petroleum 1980 , p. 2981
[34]Banerjee D, Williams JC. Perspectives on Titanium Science and Technology. Acta Mater 61:844-879, 2013.
[35]Bendersky LA, Roytburd A, Boettinger WJ. Phase transformations in the (Ti, Al) 3Nb section of the Ti-Al-Nb system. I. Microstructural prediction based on a subgroup relation between phases. Acta Metall. Mater. 42(7):2323-2335, 1994.
[36]Banumathy S, Mandal RK, Singh AK. Structure of orthorhombic martensitic phase in binary Ti-Nb alloys. J. Appl. Phys 106:3518,2009.
[37]Banerjee S, Mukhopadhyay P. Phase transformations, examples from titanium and zirconium alloys. Oxford: Elsevier; 2007.
[38]Devaraj A, Nag S, Srinivasan R, Williams REA, Banerjee S, Banerjee R, Fraser HL. Acta Mater 60:596, 2012.
[39]Grosdidier T, Combres Y, Gautier E, Philippe MJ. Metall. Mater. Trans. A 31:1095, 2000.
[40]Bertrand E, Castany P, Peron I, Gloriant T. Scr. Mater 64:1110, 2011.
[41]Combres Y, Grosdidier T , Roubaud C, Philippe MJ. The deformation mechanisms in the β-metastable β-Cez titanium alloy. Scripta Mater 36:21-28, 1997.
[42]Ishiyama S, Hanada S, Izumi O. Effect of Zr, Sn and Al Additions on deformation mode and beta phase stability of metastable meta Ti alloys. ISIJ. Int. 31:807-813, 1991.
[43]Li C, Chen JH, Wu X, Wang W, Zwaag S van der. Tuning. The stress induced martensitic formation in titanium alloys by alloy design. J. Mater. Sci. 47:4093-4100, 2012.
[44]Neelakantan S, Martin DS, Rivera-Diaz-del-Castillo PEJ, Zwaag S van der. Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scripta Mater. 60:611-614, 2009.
[45]Wang Q, Dong C, Liaw PK. Structural stabilities of β-Ti alloys studied using a new Mo equivalent derived from [β/(α + β)] phase-boundary slopes. Metall. Mater. Trans. A 46:3440-3447, 2015.
[46]Morinaga M, Yukawa N, Maya T, Sone K, Adachi H, in: P. Lacombe, R. Tricot, G. Beranger (Eds.), Sixth World Conference on Titanium, France, 1601-1606, 1988.
[47]Marteleur M, Sun F, Gloriant T, Vermaut P, Jacques PJ, Prima F. On the design of new b-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater. 66:749-752, 2012.
[48]Sun F, Zhang JY, Marteleur M, Gloriant T, Vermaut P, Laille D, Castany P, Curfs C, Jacques PJ, Prima F. Acta Mater. 61:6406, 2013.
[49]Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β type Ti-alloys using electronic parameters. Scripta Mater 55:477-480, 2006.
[50]Xu W, Kim KB, Das J, Calin M, Rellinghaus B, Eckert J. Deformation-induced nanostructuring in a Ti-Nb-Ta-In β alloy. Appl. Phys. Lett 89:1906, 2006.
[51]Guo S, Meng QK, Cheng XN, Zhao XQ. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications. J Mech Behav Biomed 38:26-32, 2014.
[52]Meng Q, Guo S, Liu Q, Hu L, Zhao XQ. A β-type TiNbZr alloy with low modulus and high strength for biomedical applications. Prog. Nat. Sci.: Mater. Int 24:157-162, 2014.
[53]Xu W, Wu X, Calin M, Stoica M, Eckertb J, Xia K. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scripta. Mater. 60:1012-1015, 2009.
[54]Xu W, Wu X, Figueiredo RB, Stoica M, Calin M, Eckert J, Langdon TG, Xia K. Nanocrystalline body-centred cubic beta-titanium alloy processed by high pressure torsion. Int. J. Mater. Res. 100:1662-1667, 2009.
[55]Xia K, Xu W, Zafari A, Wei XS. Formation of nanocrystalline β structure in metastable β Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation. Acta Mater. 97:146-155, 2015.
[56]Lai MJ, Tasan CC, Raabe D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: dislocation channeling and deformation induced ω-β transformation. Acta Mater. 100:290-300, 2015.
[57]Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D. Origin of shear induced β-ω transition in Ti-Nb-based alloys. Acta Mater 92:55-63, 2015.
[58]Yang Y, Li GP, Cheng GM, Li YL, Yang K. Multiple deformation mechanisms of Ti-22.4Nb-0.73Ta-2.0Zr-1.34O alloy. Appl. Phys. Lett. 94:061901, 2009.
[59]Yang Y, Li GP, Cheng GM, Wang H, Zhang M, Xu F, Yang K. Stress-introduced α″ martensite and twinning in a multifunctional titanium alloy. Scripta Mater. 58:9-12, 2008.
[60]Yang Y, Wu SQ, Li GP, Li YL, Lu YF, Yang K, Ge P. Evolution of deformation mechanisms of Ti-22.4Nb-0.73Ta-2Zr-1.34O alloy during straining. Acta Mater. 58:2778-2787, 2010.
[61]Ahmed M, Wexler, D, Casillas G, Ivasishin OM, Pereloma EV. The influence of β phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy. Acta Mater. 84:124-135, 2015.
[62]Lai MJ, Tasan CC, Raabe D. On the mechanism of {332} twinning in metastable β titanium alloys. Acta Mater. 111:173-186, 2016.
[63]Kajiwara S, Kikuchi T. Reversible movement of the austenite-martensite interface and dislocation structures in reverse-transformed austenite in Fe-Ni-C alloys. Philos. Mag. A 48:509-526, 1983.
[64]Guha A. Metals handbook. 9th ed. v8. In: Boy HE, Gall TL, editors. American Society for Metals Metals Park. 133-136, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top