|
Allain, C. C., Poon, L. S., Chan, C. S., Richmond, W., and Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical chemistry, 20(4), 470-475. Alonso, S., Rendueles, M., and Diaz, M. (2011). Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresour Technol, 102(20), 9730-9736. Alonso, S., Rendueles, M., and Diaz, M. (2012). Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol, 109, 140-147. Alonso, S., Rendueles, M., and Diaz, M. (2013a). Bio-production of lactobionic acid: current status, applications and future prospects. Biotechnol Adv, 31(8), 1275-1291. Alonso, S., Rendueles, M., and Diaz, M. (2013b). Feeding strategies for enhanced lactobionic acid production from whey by Pseudomonas taetrolens. Bioresour Technol, 134, 134-142. Avigad, G., Amaral, D., Asensio, C., and Horecker, B. L. (1962). The D-galactose oxidase of Polyporus circinatus. J Biol Chem, 237, 2736-2743. Ayers, R., Ayers, S. B., and Eriksson, K.-E. (1978). Cellobiose oxidase, purification and partial characterization of a hemoprotein from Sporotrichum pulverulentum. Eur. J. Biochem, 90, 171-181. Bak, T. G. (1967). Studies on glucose dehydrogenase of Aspergillus oryzae. II. Purification and physical and chemical properties. Biochim Biophys Acta, 139(2), 277-293. Baminger, U., Ludwig, R., Galhaup, C., Leitner, C., Kulbe, K. D., and Haltrich, D. (2001). Continuous enzymatic regeneration of redox mediators used in biotransformation reactions employing flavoproteins. Journal of Molecular Catalysis B: Enzymatic, 11(4), 541-550. Bao, W., and Renganathan, V. (1992). Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS letters, 302(1), 77-80. Bao, W., Usha, S. N., and Renganathan, V. (1993). Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys, 300(2), 705-713. Bean, R. C., and Hassid, W. Z. (1956). Carbohydrate oxidase from A red alga, Iridophycus flaccidum. J Biol Chem, 218(1), 425-436. Belzer, F. O., D'alessandro, A. M., Hoffmann, R. M., Knechtle, S. J., Reed, A., Pirsch, J. D., Kalayoglu, M., and Sollinger, H. W. (1992). The use of UW solution in clinical transplantation. A 4-year experience. Annals of surgery, 215(6), 579. Borges da Silva, E. A., Pedruzzi, I., and Rodrigues, A. E. (2010). Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. Adsorption, 17(1), 145-158. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. Campbell, K. P., and MacLennan, D. (1981). Purification and characterization of the 53,000-dalton glycoprotein from the sarcoplasmic reticulum. Journal of Biological Chemistry, 256(9), 4626-4632. Canevascini, G., Borer, P., and Dreyer, J. L. (1991). Cellobiose dehydrogenases of Sporotrichum (Chrysosporium) thermophile. Eur J Biochem, 198(1), 43-52. Eriksson, K.-E. L., Blanchette, R., and Ander, P. (2012). Microbial and enzymatic degradation of wood and wood components: Springer Science & Business Media. Fang, J., Liu, W., and Gao, P. J. (1998). Cellobiose dehydrogenase from Schizophyllum commune: purification and study of some catalytic, inactivation, and cellulose-binding properties. Arch Biochem Biophys, 353(1), 37-46. Fischer, E., and Meyer, J. (1889). Oxydation des milchzuckers. European Journal of Inorganic Chemistry, 22(1), 361-364. Gerling, K. (1998). Large-scale production of lactobionic acid-use and new applications. Paper presented at the International Whey Conference, Chicago (USA), 27-29 Oct 1997. Green, B. A., Ruey, J. Y., and Van Scott, E. J. (2009). Clinical and cosmeceutical uses of hydroxyacids. Clinics in dermatology, 27(5), 495-501. Henriksson, G., Johansson, G., and Pettersson, G. (2000). A critical review of cellobiose dehydrogenases. J Biotechnol, 78(2), 93-113. Hiraga, K., Kitazawa, M., Kaneko, N., and Oda, K. (1997). Isolation and some properties of sorbitol oxidase from Streptomyces sp. H-7775. Biosci Biotechnol Biochem, 61(10), 1699-1704. Hyde, S. M., and Wood, P. M. (1997). A mechanism for production of hydroxyl radicals by the brown-rot fungus Coniophora puteana: Fe (III) reduction by cellobiose dehydrogenase and Fe (II) oxidation at a distance from the hyphae. Microbiology, 143(1), 259-266. Janssen, F. W., and Ruelius, H. W. (1975). [39] Pyranose oxidase from Polyporus obtusus. Methods in enzymology, 41, 170-173. Kiryu, T., Nakano, H., Kiso, T., and Murakami, H. (2008). Purification and characterization of a carbohydrate: acceptor oxidoreductase from Paraconiothyrium sp. that produces lactobionic acid efficiently. Biosci Biotechnol Biochem, 72(3), 833-841. Kiryu, T., Yamauchi, K., Masuyama, A., Ooe, K., Kimura, T., Kiso, T., Nakano, H., and Murakami, H. (2012). Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk,“Caspian Sea yogurt”. Bioscience, biotechnology, and biochemistry, 76(2), 361-363. Kobayashi, Y., and Horikoshi, K. (1980). Identification and growth characteristics of alkalophilic corynebacterium sp. Which Produces NAD(P)-Dependent Maltose Dehydrogenase and Glucose Dehydrogenase. Agricultural and Biological Chemistry, 44(1), 41-47. Kuusisto, J., Tokarev, A. V., Murzina, E. V., Roslund, M. U., Mikkola, J.-P., Murzin, D. Y., and Salmi, T. (2007). From renewable raw materials to high value-added fine chemicals—Catalytic hydrogenation and oxidation of d-lactose. Catalysis Today, 121(1-2), 92-99. Lee., M.-H., Lai., W.-L., Lin., S.-F., and Tsai., Y.-C. (2006). Purification and characterization of a novel cellooligosaccharide oxidase from rice pathogen Sarocladium oryzae. Enzyme and Microbial Technology, 36(85-91). Lin, S. F., Yang, T. Y., Inukai, T., Yamasaki, M., and Tsai, Y. C. (1991). Purification and characterization of a novel glucooligosaccharide oxidase from Acremonium strictum T1. Biochim Biophys Acta, 1118(1), 41-47. Liu, L., Cao, S., Yang, H., and Qi, X. (2015). Pectin plays an important role on the kinetics properties of polyphenol oxidase from honeydew peach. Food chemistry, 168, 14-20. Malvessi, E., Carra, S., Pasquali, F. C., Kern, D. B., da Silveira, M. M., and Ayub, M. A. (2013). Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis. J Ind Microbiol Biotechnol, 40(1), 1-10. Mansfield, S. D., De Jong, E., and Saddler, J. N. (1997). Cellobiose dehydrogenase, an active agent in cellulose depolymerization. Applied and environmental microbiology, 63(10), 3804-3809. Meiberg, J. B. M., Bruinenberg, P. M., and Sloots, B. (1990). A process for the fermentative oxidation of reducing disaccharides: Google Patents. Mill, P. (1966). The pectic enzymes of Aspergillus niger. A mercury-activated exopolygalacturonase. Biochemical Journal, 99(3), 557. Morpeth, F. F. (1985). Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J, 228(3), 557-564. Morpeth, F. F., and Jones, G. D. (1986). Resolution, purification and some properties of the multiple forms of cellobiose quinone dehydrogenase from the white-rot fungus Sporotrichum pulverulentum. Biochem J, 236(1), 221-226. Murakami, H., Seko, A., Azumi, M., Kiso, T., Kiryu, T., Kitahara, S., Shimada, Y., and Nakano, H. (2006). Microbial conversion of lactose to lactobionic acid by resting cells of Burkholderia cepacia No. 24. Journal of Applied Glycoscience (Japan). Murakami, H., Seko, A., Azumi, M., Ueshima, N., Yoshizumi, H., Nakano, H., and Kitahata, S. (2003). Fermentative production of lactobionic acid by Burkholderia cepacia. Journal of Applied Glycoscience, 50(2), 117-120. Nakano, H., Kiryu, T., Kiso, T., and Murakami, H. (2010). Biocatalytic production of lactobionic acid. Biocatalysis and biomolecular engineering, 391-404. Nishizuka, Y., and Hayaishi, O. (1962). Enzymic formation of lactobionic acid from lactose. J. Biol. Chem, 237, 2721-2728. Nordkvist, M., Nielsen, P. M., and Villadsen, J. (2007). Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: Kinetics and operational stability. Biotechnology and bioengineering, 97(4), 694-707. Pollard, D. J., and Woodley, J. M. (2007). Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol, 25(2), 66-73. Roy, B. P., Dumonceaux, T., Koukoulas, A. A., and Archibald, F. S. (1996). Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Appl Environ Microbiol, 62(12), 4417-4427. Schmidhalter, D. R., and Canevascini, G. (1993). Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch Biochem Biophys, 300(2), 559-563. Schou, C., Christensen, M. H., and Schulein, M. (1998). Characterization of a cellobiose dehydrogenase from Humicola insolens. Biochem J, 330 ( Pt 1), 565-571. Sinsabaugh, R. (1994). Enzymic analysis of microbial pattern and process. Biology and Fertility of Soils, 17(1), 69-74. Swoboda, B. E., and Massey, V. (1965). Purification and properties of the glucose oxidase from Aspergillus niger. J Biol Chem, 240, 2209-2215. Temp, U., and Eggert, C. (1999). Novel interaction between laccase and cellobiose dehydrogenase during pigment synthesis in the white rot fungus Pycnoporus cinnabarinus. Appl Environ Microbiol, 65(2), 389-395. Xu, F., Golightly, E. J., Fuglsang, C. C., Schneider, P., Duke, K. R., Lam, L., Christensen, S., Brown, K. M., Jorgensen, C. T., and Brown, S. H. (2001). A novel carbohydrate:acceptor oxidoreductase from Microdochium nivale. Eur J Biochem, 268(4), 1136-1142. Yamada, Y., Iizuka, K., Aida, K., and Uemura, T. (1966). L-sorbose oxidase from Trametes sanguinea. Agric. Biol. Chem, 30(1), 97-98. Yang, B. Y., and Montgomery, R. (2005). Oxidation of lactose with bromine. Carbohydr Res, 340(17), 2698-2705.
|