|
[1]https://web.fg.tp.edu.tw/~tfghdb/blog/wp-content/uploads/2016/01/WL19_pp498-pp519_%E5%BE%9E%E7%94%9F%E7%90%86%E8%A8%8A%E8%99%9F%E5%88%8%E6%9E%90%E5%88%A4%E6%96%B7%E6%83%85%E7%B7%92.pdf [2]I. Christov, G. Gómez-Herrero, V. Krasteva, I. Jekova, A. Gotchev, and K. Egiazarian,“Comparative Study of Morphological and Time-Frequency ECG Descriptors for Heartbeat Classification,” Med. Eng. Phys., vol. 28, pp. 876-887, 2006. [3]P. Chazal, M. O’Dwyer, and R. B. Reilly, “Automatic Classification of Heart-beats Using ECG Morphology and Heartbeat Interval Features,” IEEE Trans. on Biomed. Eng., vol. 51, pp. 1196-1206, 2004. [4]T. Baby shalini, L. Vanitha, “Emotion Detection in Human Beings Using ECG Signals,” International Journal of Engineering Trends and Technology, vol. 4,2013. [5]T. Mar, S. Zaunseder, J. P. Martinez, M. Llamedo, and R. Poll, “Optimiztion of ECG Classification by Means of Feature Selection,” IEEE Trans. on Biomed. Eng., vol. 58, no. 8, pp. 2168-2177, 2011. [6]J. Dai, “Hybrid Approach to Speech Recognition Using Hidden Markov Models and Markov Chains,” IEE Proc.-Vis. Image Signal Process., vol. 141, pp. 273-279, 1994. [7]V. Krishnamurthy, J. B. Moore, and S. H. Chung, “Hidden Markov Model Signal Processing in Presence of Unknown Deterministic Interferences,” IEEE Trans. On Automatic Control, vol. 38, no. 1, pp. 146-152, 1993. [8]D. J. Miller, and M. S. Park, “A Sequence-Based Approximate MMSE Decoder for Source Coding Over Noisy Channels Using Discrete Hidden Markov Models,” IEEE Trans. on Communications, vol. 46, no. 2, pp. 222-231, 1998. [9]Y. Bengio, V. P. Lauzon, and R. Ducharme, “Experiments on the Application of IOHMMs to Model Financial Returns Series,” IEEE Trans. on Neural Networks, vol. 12, no. 1, pp. 113-123, 2001. [10]https://activity.ntsec.gov.tw/lifeworld/doc/62%E5%BF%83%E8%87%9F%E7%%9A%84%E6%A7%8B%E9%80%A0%E8%88%87%E5%8A%9F%E8%83%BD.pdf [11]“Heart Function,” The Permanente Medical Group https://www.permanente.net/homepage/kaiser/pages/f63363.html [12]https://www.dcbiomed.com/proimages/materials/Brochures_and_related_Articles/Introductory_guide_to_ECG_C2_0-950820.pdf [13]https://zh.wikipedia.org/wiki/%E5%BF%83%E7%94%B5%E5%9B%BE [14]https://smallcollation.blogspot.tw/2013/07/electrocardiogram-ekgecg.html#gsc.tab=0 [15]https://www.sci.utah.edu/~macleod/bioen/be6000/labnotes/ecg/descrip.html [16]https://compharm.net/ecg_scanner/basics/ [17]https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/chest_leads.php [18]K. Grauer, “ECG Interpretation Review #34,” ECG Interpretation, 2012. http://ecg-interpretation.blogspot.tw/2012/01/ecg-interpretation-review-34-acute- mi.html [19]J. Wagner, J. Kim, E. André. “From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification,” In IEEE International Conference on Multimedia & Expo, 2005. [20]“ECG Segments,” wb-CME: Electrocardiography Primer https://www.education.science-thi.org/edu_ecg/ecginclinicalpractice/normalecg/ecgsections/index.html [21]https://www.shute.kh.edu.tw/~healthcare/U20030302001/ [22]https://nccur.lib.nccu.edu.tw/bitstream/140.119/39193/6/102506.pdf [23]A. Ortony, T. J. and Turner. “What’s basic about basic emotions?, ” Psychological Review, Vol. 97, No. 3, 315-331, 1990 [24]Pediatric ECG Cases,” Medscape Reference http://reference.medscape.com/features/slideshow/ped-ecg [25]J. A. Healey: Wearable and Automotive Systems for Affect Recognition from Physiology, PhD thesis, MIT, Cambridge, MA, May 2000 [26]R. W. Picard, E. Vyzas, and J. Healey: Toward Machine Emotional Intelligence : Analysis of Affective Physiological State, IEEE Transactions Pattern Analysis and Machine Intelligence, Vol.23, No.10, pp.1175-1191, Oct. 2001 [27]A. Haag, S. Goronzy, P. Schaich, J. Williams: Emotion Recognition Using Bio-Sensors: First Step Towards an Automatic System, Affective Dialogue Systems, Tutorial and Research Workshop, Kloster Irsee, Germany, June 14-16, 2004. [28]E. Vyzas, R.W. Picard: Affective pattern classification. Florida, MIT Media Laboratory Perceptual Computing Section Technical Report, pp.473, 1998. [29]R. W. Picard, E. Vyzas, J. EY “Toward machine emotional intelligence analysis of affective physiological state,” IEEE Transactions Pattern Analysis and Machine Intelligence,1175-1191, 2001. [30]L. Li, J. Chen. “Emotion Recognition Using Physiological Signals from Multiple Subjects”. Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP'06), 355-358, 2006. [31]L. Xun, G. Zheng, “ECG Signal Feature Selection for Emotion Recognition,” TELKOMNIKA, Vol.11, No.3, pp. 1363 ~ 1370, March 2013 [32]M. Dorigo, G. di Caro, “The ant colony optimization meta-heuristic,” New Ideas in Optimization, McGraw-Hill, London, pp. 11-32, 1999. [33]P. Blunsom, “Hidden Markov Model,” The University of Melbourne, Department of Computer Science and Software Engineering, 19th August 2004. https://www.cs.mu.oz.au/460/2004/materials/hmm-tutorial.pdf [34]W. Pedrycz, and K. Hirota, “Fuzzy vector quantization with the particle swarm optimization: A study in fuzzy granulation–degranulation information processing,” Signal Processing, Vol. 87, pp. 2061–2074, 2007.
|