跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/17 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高冀正
研究生(外文):KAO, CHI-CHENG
論文名稱:從社群網路用戶使用記錄探勘階層互動關係及其應用
論文名稱(外文):Mining Multiplex Interaction Relationships from Usage Records in Social Networks andIts Applications
指導教授:洪宗貝洪宗貝引用關係
指導教授(外文):HONG, TZUNG-PEI
口試委員:藍國誠陳俊豪蘇家輝洪宗貝
口試委員(外文):LAN, GUO-CHENGCHEN, JYUN-HAOSU, JIA-HUEIHONG, TZUNG-PEI
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:應用數學系碩博士班
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:65
中文關鍵詞:社群網站多階層式網絡資訊散佈
外文關鍵詞:Social NetworksMultiplex NetworksInformation Diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
隨著社群網站在人們的生活中越來越普及,社群網站也成為發佈訊息或廣告
的最佳選擇。對發佈訊息或是廣告商而言最重要的是在社群網站上成千上萬的使
用者中找出最好的發佈點和最有效率的連結來加速整個傳播的過程。因此,廣告
商需要知道社群網站中用戶之間的親密度,以便資訊傳播可以更容易進行。在本
論文中,我們透過用戶在社群網路上的使用紀錄,提出了兩個階層互動關係的探
勘方法。除此之外,根據所得到的互動關係矩陣,我們描述了兩種應用。第一個
應用將互動關係矩陣與朋友或追蹤者關係做比對,用戶可以藉此得知在社群網站
中真正密切互動的好友或追蹤者。第二個應用則利用互動關係矩陣中的標籤所形
成的階層式網路來執行資訊傳播。根據模擬資料測試所得的實驗結果,第一種計
算互動關係矩陣方法的執行速度較第二種快,但第二種計算方法所得的密切互動
層會有較高的互動頻率,在資訊傳播策略上可以有較好的表現。
Social networks have become increasingly popular and are more commonly used
in everyday life. They also become the most convenient places to send information or
receive advertisements. Among the number of friends on a social network, it is
important for the diffusion process to find the best sources and the most efficient
connections to spread. Advertisers may need to know the closeness of the relationship
between users on a social network, such that the information diffusion can proceed more
easily. In this thesis, we propose two approaches to find the multiplex interaction
relationships based on usage records on a social network. Additionally, there are two
applications described based on the interaction matrix. The first one is to use the
interaction matrix to check the friend and follower relations such that users can find
which friends or followers are brisk or not. The second application is to use labels in
the interaction matrix to form a multiplex network for information diffusion. Our
experimental results rely on simulated data. The first approach is faster than the second
approach while the second one could find user pairs with higher interaction frequencies,
which may cause better performance for information diffusion.
Content
CHAPTER 1 INTRODUCTION ............................................................................ 1
CHAPTER 2 RELATED WORKS ......................................................................... 4
2. 1 User Data ................................................................................................. 4
2. 2 Multiplex Networks ................................................................................. 5
2. 3 Information Diffusion (Rumor Spreading) .............................................. 6
2. 4 Dunbar’s Number ..................................................................................... 7
2. 5 Centrality.................................................................................................. 8
CHAPTER 3 FINDING THE INTERSACTION RELATIONS FROM ACTIONS
.........................................................................................................1

3.1 Idea ....................................................................................................... 11
3.2 The First Algorithm for Finding Interaction Matrices ......................... 14
3.3 An Example ......................................................................................... 16
3.4 The Second Algorithm for Finding Interaction Matrices ..................... 22
3.5 An Example ......................................................................................... 24
CHAPTER 4 APPLICATIONS OF INTERACTION MATRICES ................... 27
4.1 Multiplex Networks ............................................................................. 29
4.2 An Example ......................................................................................... 31
4.3 An Information Diffusion Strategy in a Multiplex Network ............... 38
4.3.1 Preprocessing ........................................................................... 39
4.3.2 An example .............................................................................. 40
4.3.3 Information Diffusion Strategy ................................................ 42
v
4.3.4 An example .............................................................................. 44
CHAPTER 5 EXPERIMENTAL RESULT ........................................................ 47
5.1 The Thresholds in Finding Interaction Matrix ..................................... 48
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ................................ 53
References ................................................................................................................ 55
[1] C. Allen, http://www.lifewithalacrity.com/2004/03/the_dunbar_numb.html.
[2] A. Barrat, M. Barthélemy, R. PastorSatorras,
and A. Vespignani, “The
Architecture of Complex Weighted Networks”, The National Academy of Sciences,
Vol 101, No. 11, pp. 37473752,
2014.
[3] F. Battiston, V. Nicosia, and V. Latora, “Structural Measures for Multiplex
Networks”, Physics and Society, Vol. 89, No. 3, 2014.
[4] M. Berlingerio, M. Coscia, and F. Giannotti, “Finding Redundant and
Complementary Communities in Multidimensional Networks”, The 20th ACM
international conference on Information and knowledge management, pp. 21812184,
2011.
[5] B. Brubach, S. Ehsani, and K. A. Sankararaman, “Algorithms in the PublicPrivate
Model to SubAdditive
functions”, Course Project Report, 2015.
[6] X. B. Cao, C. Hong, W. B. Du, and J. Zhang, “Improving the Network Robustness
against Cascading Failures by Adding Links”, Chaos, Solitons & Fractals, Vol.
57, pp. 3540,
2013.
[7] F. Chierichetti, A. Epasto, R. Kumar, S. Lattanzi, and V. Mirrokni, “Efficient
Algorithms for PublicPrivate
Social Networks”, The 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 139148,
Sydney, 2015.
[8] E. Cohen, “SizeEstimation
Framework with Applications to Transitive Closure
and Reachability”, Journal of Computer and System Sciences, Vol 55, pp. 441453,
1997.
[9] E. Cohen, and H. Kaplan, “Summarizing Data using Bottomk
Sketches”, The 26th
56
annual ACM symposium on Principles of Distributed Computing, pp. 225234,
2007.
[10] E. Cohen, “AllDistances
Sketches, Revisited: HIP Estimators for Massive Graphs
Analysis”, The 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 23202334,
USA, 2014.
[11] R. Dunbar, “How Many Friends Does One Person Need? Dunbar’s Number and
other Evolutionary Quirks”, 2010.
[12] Facebook, Inc. https://investor.fb.com/investornews/
pressreleasedetails/
2017/FacebookReportsFirstQuarter2017Results/
default.aspx, 2017
[13] B. Goncalves, N. Perra, and A. Vespignani, “Modeling Users’ Activity on Twitter
Networks: Validation of Dunbar’s Number”, PLOS ONE, Vol. 6, No. 8, 2011.
[14] R. Heartherly, M. Kanatrcioglu, and B. Thuraisingham, “Social Network
Classification Incorporating Link Type Values”, IEEE International Conference
on Intelligence and Security Informatics, pp. 1924,
2009.
[15] E. Hoz, J. M. GimenezGuzman,
G. LopezCivera,
I. MarsaMaestre,
and D.
Orden, “TOWER: Topology Optimization for Network Enhanced Resilience”,
The 7th International Conference on Data Communication Networking, 2016.
[16] R. J. Hu, Q. Li, G. Y. Zhang, and W. C. Ma, “Centrality Measures in Directed
Fuzzy Social Networks”, Fuzzy Information and Engineering, Vol. 7, No. 1, pp.
115128,
2015.
[17] X. Ji, B. Wang, D. Liu, G. Chen, F. Tang, D. Wei, and L. Tu, “Improving
Interdependent Networks Robustness by Adding Connectivity Links”, Physica A:
Statistical Mechanics and its Applications, Vol. 444, pp. 916,
2016.
[18] A. M. Kaplan, and M. Haenlein, “Two Hearts in Threequarter
Time: How to
Waltz the Social Media/Viral Marketing Dance”, Business Horizons, Vol. 54, No.
57
3, pp. 253263,
2011.
[19] M. Kimura, K. Saito, K. Ohara, and H. Motoda, “Speedingup
Node Influence
Computation for Huge Social Networks”, International Journal of Data Science
and Analytics, Vol. 1, No. 1, pp. 316,
2016.
[20] M. Kivelä, A. Arenas, and M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A.
Porter, “Multilayer Networks”, Physics and Society, Vol. 2, No. 3, pp. 203271,
2014.
[21] X. Lin, G. Xu, E. Chen, and L. Li, “Learning User Preferences across Multiple
Aspects for Merchant Recommendation”, IEEE International Conference on Data
Mining, pp. 865870,
2015.
[22] W. Luo, W. P. Tay, and M. Leng, “Rumor Spreading Maximization and Source
Identification in a Social Network”, IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp. 186193,
2015.
[23] W. Luo, W. P. Tay, and M. Leng, “On the Universality of Jordan Centers for
Estimating Infection Sources in Tree Networks”, IEEE Transactions on
Information Theory, Vol. 63, No. 7, pp. 46344657,
2017.
[24] B. Min, and K. I. Goh, “Layercrossing
Overhead and Information Spreading in
Multiplex Social Networks”, Physics and Society, 2013.
[25] B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi, “Fast Distributed
Submodular Cover: Publicprivate
Data Summarization”, Conference and
Workshop on Neural Information Processing Systems, pp. 3594–3602, 2016.
[26] K. Ohara, K. Saito, M. Kimura, and H. Motoda, “Accelerating Computation of
Distance Based Centrality Measures for Spatial Networks”, International
Conference on Discovery Science, pp. 376391,
2016.
[27] T. Opsahi, F. Agneessens, and J. Skvoretz, “Node Centrality in Weighted
58
Networks: Generalizing Degree and Shortest Paths”, Social Networks, Vol. 32, pp.
245251,
2010.
[28] B. A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler, and C. Faloutsos,
“Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks”,
IEEE 11th International Conference on Data Mining, pp. 537546,
2011.
[29] X. Ruan, Z. Wu, H. Wang, and S. Jajodia, “Profiling Online Social Behaviors for
Compromised Account Detection”, IEEE Transaction on Information Forensics
and Security, Vol. 11, No. 1, pp. 176187,
2016.
[30] K. Saito, M. Kimura, K. Ohara, and H. Motoda, “Detecting Critical Links in
Complex Network to Maintain Information Flow/Reachability”, 14th Pacific Rim
International Conference on Artificial Intelligence, pp. 419432,
2016.
[31] J. W. Wang, and L. L. Rong, “A Model for Cascading Failures in Scalefree
Networks with a Breakdown Probability”, Physica A: Statistical Mechanics and
its Applications, Vol. 388, No. 7, pp. 12891298,
2009.
[32] J. Wang, “Mitigation Strategies on Scalefree
Networks against Cascading
Failures”, Physica A: Statistical Mechanics and its Applications, Vol. 392, No. 9,
pp. 22572264,
2013.
[33] Z. K. Zhang, C. Liu, X. X. Zhan, X. Lu, and C. X. Zhang, “Dynamics of
Information Diffusion and Its Applications on Complex Networks”, Physics
Reports, Vol. 651, pp. 134,
July 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top