(3.237.234.213) 您好!臺灣時間:2021/03/09 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪識涵
研究生(外文):HUNG, SHIH-HAN
論文名稱:五種原料製備水溶性幾丁聚醣於絮凝、抗菌、保濕和 吸附油脂之應用
論文名稱(外文):Application of Five Kinds of Raw Materials in Preparation of Water-soluble Chitosan in Flocculation, Antibacterial, Moisturizing and Adsorption Grease
指導教授:吳豐智
指導教授(外文):WU, FENG-CHIN
口試委員:劉炳嵐曾如玲
口試委員(外文):LIU, BING-LANTSENG, RU-LING
口試日期:2017-07-21
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:189
中文關鍵詞:幾丁聚醣水溶性絮凝抗菌保濕吸附油脂
外文關鍵詞:chitosanwater-solubleflocculationantibacterialmoisturizingadsorption grease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以五種水產廢棄物(魷魚軟骨,龍蝦殼,泰國蝦殼,螃蟹殼,草蝦殼)為原料,經去蛋白質、去礦物質及去乙醯化製得幾丁聚醣(CS),再利用氧化降解法製得不同斷鏈程度水溶性幾丁聚醣(WCS),並探討其物化表面性質(TGA, EA, FITR, SEM, BET, XRD,接觸角試驗,表面張力試驗)及其應用(絮凝,保濕,吸油,抗菌)特性。TGA顯示CS與WCS質量損失比率與最大裂解溫度皆有顯著差異。FTIR圖譜CS與WCS皆含有羥基(−OH)和胺基(−NH2)的鍵結官能基。接觸角試驗證明WCS具有極佳的親水性。WCS進行液相絮凝反應性染料(RR222、RB222、RY145) 和酸性染料(AO7、AG25、AB74)溶液之絮凝去色,絮凝量在792-2347 mg/g之間,高於CS吸附作用4.42-13.11倍。保濕作用於恆溫25℃相對濕度60%實驗,持水保濕比為1.75倍,證實具有保濕作用。製作泡綿狀幾丁聚醣吸油材料,對食用油(蓖麻油、沙拉油)和工業用油(煤油、柴油和機油)的吸油量分為30.5-37.0 g g-1和30.4-56.3 g g-1。本文材料達文獻之高吸油性材料水準,而且為天然可生物降解。WCS (1g/L)對E. coli和S. aureus即有抑菌效果,3 g/L以上達高度抑菌;pH6下,較高分子量的WCS對E. coli和S. aureus抑制活性增加。

In this study, we used five types of aquatic wastes (Cuttlebone, Labsor shell, Thai shrimp shell, Crab shell, Penaeus monodon shell) as raw materials to obtain chitosan (CS) after deproteinization, demineralization, and deacetylation. Water-soluble chitosan (WCS) of different chain lengths was then synthesized via oxidative degradation. Surface physical and chemical properties of CS and WCS (determined by TGA, EA, FITR, SEM, BET, XRD, contact angle test, and surface tension test) and application characteristics (flocculation, moisture retention, oil absorption, and antibacterial properties) were examined. TGA showed that CS and WCS were significantly different with respect to mass loss ratio and maximum cracking temperature. The FTIR spectrum showed that CS and WCS have hydroxyl (−OH) and amine (−NH2) functional groups. The contact angle test demonstrated that WCS has excellent hydrophilicity. WCS underwent liquid-phase flocculation with reactive dyes (RR222, RB222, and RY145) and acidic dyes (AO7, AG25, and AB74), and its absorption capacity was found to be 792–2347 mg/g, which is 4.42–13.11 times higher than that of CS. The water retention ratio of WCS was 1.75 in an experiment with a constant temperature of 25℃ and a relative humidity of 60%, proving its moisture-retention effect. When made into sponge-like CS oil-absorbing material, the oil absorption was 30.5–37.0 g g−1and 30.4–56.3 g g−1 for cooking oils (castor oil and salad oil) and industrial oils (coal , diesel, and engine oil), respectively. The material discussed in this study meets the standards set for high-oil absorption material described in literatures and is natural and biodegradable. WCS (1g/L) has antibacterial properties against Escherichia coli and Staphylococcus aureus. At concentrations higher than 3g/L, WCS can be highly antibacterial. At pH < 6, the inhibitory activity of WCS against E. coli and S. aureus increases with increase in molecular weights.

摘要...........................................I
Abstract......................................II
目錄..........................................IV
圖目錄........................................IX
表目錄........................................XV
符號說明...................................XVIII
第一章 前言....................................1
1.1研究緣起....................................1
1.2研究目的與內容...............................2
第二章 文獻回顧.................................5
2.1幾丁類物質的介紹.............................5
2.1.1幾丁質....................................5
2.1.2幾丁聚醣..................................7
2.2幾丁質、幾丁聚醣與水溶性幾丁聚醣的製備.........8
2.2.1 幾丁質的製備.............................8
2.2.2熱鹼處理法製備幾丁聚醣.....................8
2.2.3酵素法製備幾丁聚醣.........................9
2.2.4強酸水解法製備水溶性幾丁聚醣...............10
2.2.5超音波法製備水溶性幾丁聚醣.................10
2.2.6酵素水解法製備水溶性幾丁聚醣...............11
2.2.7氧化降解法製備水溶性幾丁聚醣...............11
2.3幾丁質、幾丁聚醣與水溶性幾丁聚醣的物化性質.....12
2.3.1UV光譜法測定去乙醯度.....................12
2.3.2IR光譜法測定去乙醯度.....................12
2.3.3黏度平均分子量...........................13
2.3.4凝膠滲透色譜法測定分子量..................13
2.4染料......................................14
2.4.1染料分類................................14
2.4.2染料廢水的特性...........................16
2.5膠凝作用..................................18
2.6保濕作用..................................19
2.7油脂吸附..................................20
2.8抗菌作用..................................21
2.8.1幾丁聚醣抗菌機制.........................21
2.8.2幾丁聚醣抑菌菌株介紹......................22
第三章 實驗方法...............................23
3.1實驗設備與藥品.............................23
3.2幾丁聚醣之製備.............................25
3.2.1礦物質之去除.............................25
3.2.2蛋白質之去除.............................25
3.2.3去乙醯化反應.............................25
3.3水溶性幾丁聚醣之製備........................27
3.4泡棉狀幾丁聚醣製備..........................28
3.5幾丁聚醣之物理、化學及表面性質...............29
3.5.1物理性質.................................29
3.4.2化學性質.................................32
3.4.3表面性質.................................33
3.5液相膠凝實驗方法...........................34
3.5.1初濃度對膠凝量的去色作用..................34
3.5.2斷鏈時間對膠凝量的影響....................34
3.5.3分析方法.................................35
3.6保濕作用...................................38
3.6.1保濕材料與製備...........................38
3.6.2保濕性能測定.............................38
3.7吸油作用...................................39
3.8抗菌作用...................................40
第四章 結果與討論..............................41
4.1幾丁聚醣分子量測定..........................41
4.2水溶性幾丁聚醣的物理檢測.....................44
4.2.1魷魚軟骨水溶性幾丁聚醣檢測.................44
4.2.2泰國蝦、龍蝦、螃蟹及草蝦水溶性幾丁聚醣檢測...48
4.3水溶性幾丁聚醣的化學性質檢測...................55
4.3.1龍蝦殼水溶性幾丁聚醣檢測.....................55
4.3.2魷魚軟骨、泰國蝦、螃蟹及草蝦水溶性幾丁聚醣檢測...59
4.4水溶性幾丁聚醣的表面性質檢測......................63
4.4.1泰國蝦殼水溶性幾丁聚醣檢測.......................63
4.4.2魷魚軟骨、龍蝦、螃蟹及草蝦水溶性幾丁聚醣檢測.......68
4.5液相絮凝探討......................................76
4.5.1初濃度對絮凝量的影響...........................76
4.5.2斷鏈時間對絮凝量的影響........................84
4.6保濕作用探討..................................92
4.7吸油作用探討.................................96
4.8抗菌作用探討................................99
4.8.1濃度對水溶性幾丁聚醣抑菌之影響.............99
4.8.2斷鏈時間對水溶性幾丁聚醣抑菌之影響.......100
4.8.3 pH對水溶性幾丁聚醣抑菌之影響...........101
第五章 結論................................102
附錄A.....................................105
附錄B.....................................129
附錄C....................................141
附錄D...................................149
參考文獻...............................154


Ahmed, S., Ahmad, M., & Ikram, S. (2014). Chitosan: A Natural Antimicrobial Agent-A Review. Journal of Applicable Chemistry, 3(2), 493-503.

Allen, S., Carolan, C., Blair, H., & Mckay, G. (1991). N, O-arboxymethyl Chitosan, A Water Soluble Derivative. Paper presented at the Chem. E. Res. Conf. Cambridge.

Arbatan, T., Fang, X., & Shen, W. (2011). Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chemical Engineering Journal, 166(2), 787-791.

Assaad, E., Azzouz, A., Nistor, D., Ursu, A. V., Sajin, T., Miron, D. N.,& Hausler, R. (2007). Metal removal through synergic coagulation–flocculation using an optimized chitosan–montmorillonite system. Applied Clay Science, 37(3-4), 258-274.

Austin, P. R., Brine, C. J., Castle, J. E., & Zikakis, J. P. (1981). Chitin: New facets of research. Science, 212(4496), 749-753.

Baxter, A., Dillon, M., Taylor, K. A., & Roberts, G. A. (1992). Improved method for ir determination of the degree of N-acetylation of chitosan. International journal of biological macromolecules, 14(3), 166-169.

Bolto, B., & Gregory, J. (2007). Organic polyelectrolytes in water treatment. Water Res, 41(11), 2301-2324.

Bordenave, N., Grelier, S., Pichavant, F., & Coma, V. (2007). Water and moisture susceptibility of chitosan and paper-based materials: Structure–property relationships. Journal of Agricultural and Food Chemistry, 55(23), 9479-9488.

Campaniello, D., & Corbo, M. R. (2010). Chitosan: a polysaccharide with antimicrobial action. Application of Alternative Food-Preservation Technologies to Enhance Food Safety and Stability, 92.

Carmody, O., Frost, R., Xi, Y., & Kokot, S. (2007). Adsorption of hydrocarbons on organo-clays--implications for oil spill remediation. J Colloid Interface Science, 305(1), 17-24.

Chang, S. H., Lin, H. T., Wu, G. J., & Tsai, G. J. (2015). pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymer, 134, 74-81.

Chen, L., Du, Y., Wu, H., & Xiao, L. (2002). Relationship between molecular structure and moisture-retention ability of carboxymethyl chitin and chitosan. Journal of Applied Polymer Science, 83(6), 1233-1241.

Chen, Y., Liu, S., & Wang, G. (2007). A kinetic investigation of cationic starch adsorption and flocculation in kaolin suspension. Chemical Engineering Journal, 133(1-3), 325-333.

Corbo, M., Speranza, B., Campaniello, D., D’amato, D., & Sinigaglia, M. (2010). Fresh-cut fruits preservation: current status and emerging technologies. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 1143-1154.

Dasari, M. A., Kiatsimkul, P.-P., Sutterlin, W. R., & Suppes, G. J. (2005). Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis A: General, 281(1-2), 225-231.

Domszy, J. G., & Roberts, G. A. (1985). Reactions of chitosan: 5. The reaction of chitosan with 2, 4-dinitrofluorobenzene and determination of the extent of the reaction. International journal of biological macromolecules, 7(1), 45-48.

Draelos, Z. D., Ertel, K., Berge, C., & Amburgey, M. (2005). Niacinamide-containing facial moisturizer improves skin barrier and benefits subjects with rosacea. CUTIS-NEW YORK-, 76(2), 135.

Ezure, T., Hosoi, J., Amano, S., & Tsuchiya, T. (2009). Sagging of the cheek is related to skin elasticity, fat mass and mimetic muscle function. Skin Res Technology, 15(3), 299-305.

Friedman, M., & Juneja, V. K. (2010). Review of Antimicrobial and Antioxidative Activities of Chitosans in Food. Journal of Food Protection, 73(9), 1737-1761. doi:10.4315/0362-028x-73.9.1737

Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097-1107.

Gregory, J. (2005). Particles in water: properties and processes: CRC Press.

Guibal, E., & Roussy, J. (2007). Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). Reactive and Functional Polymers, 67(1), 33-42.

Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology, 48, 40-50.

Hasegawa, M., Isogai, A., & Onabe, F. (1993). Preparation of low-molecular-weight chitosan using phosphoric acid. Carbohydrate Polymers, 20(4), 279-283.

Hirano, S. (1989). Production and application of chitin and chitosan in Japan. Chitin and chitosan,(Skjak-Braek G, Anthonsesn, T., Sandford P (Eds) pp 51-69, Elsevier Applied Science, London, UK. ISBN 1851663959, 9781851663958.

Hirano, S., Kondo, Y., & Fujii, K. (1985). Preparation of acetylated derivatives of modified chito-oligosaccharides by the depolymerisation of partially N-acetylated chitosan with nitrous acid. Carbohydrate Rresearch, 144(2), 338-341.

Hirano, S., & Nagao, N. (2014). Effects of Chitosan, Pectic Acid, Lysozyme, and Chitinase on the Growth of Several Phytopathogens. Agricultural and Biological Chemistry, 53(11), 3065-3066.

Howard, A. (2004). Anatomy of a moisturizer. SKINmed: Dermatology for the Clinician, 3(5), 279-280.

Hu, S., Chen, M. C., Lee, M. C., Yang, L. C., & Keoprasom, N. (2009). Fractional resurfacing for the treatment of atrophic facial acne scars in asian skin. Dermatol Surg, 35(5), 826-832.

Hu, Y., Liu, X., Zou, J., Gu, T., Chai, W., & Li, H. (2013). Graphite/Isobutylene-isoprene rubber highly porous cryogels as new sorbents for oil spills and organic liquids. ACS Applied Materials & Interfaces, 5(16), 7737-7742.

Huang X.Y., Mao X.Y., Bu H.T., Yu X.Y., Gang B., Jiang Z.,Ming H. (2011), Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal.Carbohydrate Research 346, 1232–1240

Huang, J., Zhao, D., Hu, S., Mao, J., & Mei, L. (2012). Biochemical activities of low molecular weight chitosans derived from squid pens. Carbohydrate Polymers, 87(3), 2231-2236.

Huang, M., Khor, E., & Lim, L.-Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharmaceutical Research, 21(2), 344-353.

Inui, H., Tsujikubo, M., & Hirano, S. (2014). Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells. Bioscience, Biotechnology, and Biochemistry, 59(11), 2111-2114.

Iqbal, J., Wattoo, F. H., Wattoo, M. H. S., Malik, R., Tirmizi, S. A., Imran, M., & Ghangro, A. B. (2011). Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arabian Journal of Chemistry, 4(4), 389-395.

Jardine, M., & Sayed, S. (2014). Chitosan as an Advanced Healthcare Material. Advanced Biomaterials and Biodevices, 147-182.

Jeon, Y.-J., Shahidi, F., & Kim, S.-K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16(2), 159-176.

Jiang, J.-Q. (2015). The role of coagulation in water treatment. Current Opinion in Chemical Engineering, 8, 36-44.

Jin, X., Xi, F., Lv, D., Wu, Q., & Lin, X. (2011). The effect of the chitosan membrane properties on the enzyme adsorption and performance for the construction of horseradish peroxidase biosensors. Carbohydrate Polymers, 85(4), 786-791.

Juang, R.-S., Tseng, R.-L., Wu, F.-C., & Lee, S.-H. (1997). Adsorption behavior of reactive dyes from aqueous solutions on chitosan. Journal of Chemical Technology & Biotechnology, 70(4), 391-399.

Karakasi O.K. Moutsatsou A., Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel, 89(12), 3966-3970

Kim, S.-K., Mendis, E., & Shahidi, F. (2007). Marine fisheries by-products as potential nutraceutical: An overview. Marine Nutraceutical and Functional Foods, 1-23.

Krajewska, B., Wydro, P., & Jańczyk, A. (2011). Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in Langmuir films. Biomacromolecules, 12(11), 4144-4152.

Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489-508.

Lee, K. E., Morad, N., Teng, T. T., & Poh, B. T. (2012). Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal, 203, 370-386.

Lee, M. C., Hu, S., Chen, M. C., Shih, Y. C., Huang, Y. L., & Lee, S. H. (2009). Skin rejuvenation with 1,064-nm Q-switched Nd:YAG laser in Asian patients. Dermatol Surg, 35(6), 929-932.

Li, H., Du, Y., Wu, X., & Zhan, H. (2004a). Effect of molecular weight and degree of substitution of quaternary chitosan on its adsorption and flocculation properties for potential retention-aids in alkaline papermaking. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 242(1-3), 1-8.

Li, H., Du, Y., Xu, Y., Zhan, H., & Kennedy, J. F. (2004b). Interactions of cationized chitosan with components in a chemical pulp suspension. Carbohydrate Polymers, 58(2), 205-214.

Li, H., Liu, L., & Yang, F. (2012). Hydrophobic modification of polyurethane foam for oil spill cleanup. Mar Pollut Bull, 64(8), 1648-1653.

Li, H., Xu, J., Liu, Y., Ai, S., Qin, F., Li, Z., Huang, Z. (2011). Antioxidant and moisture-retention activities of the polysaccharide from Nostoc commune. Carbohydrate Polymers, 83(4), 1821-1827.

Lim, S.-H., & Hudson, S. M. (2003). Review of Chitosan and Its Derivatives as Antimicrobial Agents and Their Uses as Textile Chemicals. Journal of Macromolecular Science, Part C: Polymer Reviews, 43(2), 223-269.

Lu, Y., Shang, Y., Huang, X., Chen, A., Yang, Z., Jiang, Y., Yang, H. (2011). Preparation of strong cationic chitosan-graft-polyacrylamide flocculants and their flocculating properties. Industrial & Engineering Chemistry Research, 50(12), 7141-7149.

Maghami, G. G., & Roberts, G. A. (1988). Evaluation of the viscometric constants for chitosan. Macromolecular chemistry and physics, 189(1), 195-200.

Mansilla, A., Albertengo, L., Rodríguez, M., Debbaudt, A., Zúñiga, A., & Casalongué, C. (2013). Evidence on antimicrobial properties and mode of action of a chitosan obtained from crustacean exoskeletons on Pseudomonas syringae pv. tomato DC3000. Applied Microbiology and Biotechnology, 97(15), 6957-6966.

Marcellin, E., Steen, J. A., & Nielsen, L. K. (2014). Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnology, 98(16), 6947-6956.

Matilainen, A., Vepsalainen, M., & Sillanpaa, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: a review. Adv Colloid Interface Science, 159(2), 189-197.

Mohammad R.K.(2007) Caculation of Mark-Houwink-Sakurada (MHS) equation viscometric contants for chitosan in any solvent-temperature system using experiment reported viscometric contants data. Carbohydrate Polymer 68,477-488

Muzaffar, S., Bhatti, I. A., Zuber, M., Bhatti, H. N., & Shahid, M. (2017). Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan. Int J Biol Macromol, 94(Pt A), 51-60.

Muzzarelli, R., & Muzzarelli, C. (2005). Chitosan chemistry: relevance to the biomedical sciences Polysaccharides I (pp. 151-209): Springer.

Muzzarelli, R. A. (1973). Natural chelating polymers; alginic acid, chitin and chitosan Natural chelating polymers; alginic acid, chitin and chitosan: Pergamon Press.

Muzzarelli, R. A., & Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5(6), 461-472.

Ngah, W., & Isa, I. (1998). Comparison study of copper ion adsorption on chitosan, Dowex A1, and Zerolit 225. Journal of Applied Polymer Science, 67(6), 1067-1070.

Nguyen, D. Q., Potokar, T. S., & Price, P. (2010). An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns, 36(1), 23-28.

Oh, G. H., & Park, C. R. (2002). Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel, 81(3), 327-336.

Oluwasola O., Xianshe F., Garry L. Rempelb, Qinmin P., (2017)Modification of formaldehyde-melamine-sodium bisulfite copoly.mer foam and its application as effective sorbents for clean up of oil spills. Chemical Engineering Science, 160(16)384-395.

Oribayo, O., Feng, X., Rempel, G. L., & Pan, Q. (2017). Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chemical Engineering Journal, 323, 191-202.

Onuma C. Ray F. Yunfei X., Serge K. (2007)Adsorption of hydrocarbons on organo-clays—Implications for oil spill remediation. Journal of Colloid and Interface Science,305(1)17-24

Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63(3), 367-374.

Qin, C. Q., Du, Y. M., & Xiao, L. (2002). Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan. Polymer Degradation and Stability, 76(2), 211-218.

Rabea, E. I., Badawy, M. E.-T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.

Ravi Kumar, M. N. V. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46(1), 1-27.

Razali, M. A. A., Ahmad, Z., Ahmad, M. S. B., & Ariffin, A. (2011). Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chemical Engineering Journal, 166(2), 529-535.

Rege, P. R., Garmise, R. J., & Block, L. H. (2003). Spray-dried chitinosans. International Journal of Pharmaceutics, 252(1), 41-51.

Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes – An eco-friendly approach. European Polymer Journal, 45(5), 1337-1348.

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632.

Rinaudo, M., Milas, M., & Le Dung, P. (1993). Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. International Journal of Biological Macromolecules, 15(5), 281-285.

Rios-Donato, N.,Navarro, R.,Avila-Rodriguez, M., & Mendizabal, E. (2012). Coagulation–flocculation of colloidal suspensions of kaolinite,bentonite, and alumina by chitosan sulfate. Journal of Applied Polymer Science, 123(4), 2003-2010.

Robert, L. (2015). Hyaluronan, a truly "youthful" polysaccharide. Its medical applications. Pathologie Biologie (Paris), 63(1), 32-34.

Saima, Kuddus, M., Roohi, & Ahmad, I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11(1), 39-46.

Sashiwa, H., & Aiba, S.-i. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, 29(9), 887-908.

Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R., & Tokura, S. (1991). Distribution of the acetamide group in partially deacetylated chitins. Carbohydrate Polymers, 16(3), 291-296.

Sashiwa, H., Saimoto, H., Shigemasa, Y., & Tokura, S. (1993). N-Acetyl group distribution in partially deacetylated chitins prepared under homogeneous conditions. Carbohydrate Research, 242, 167-172.

Schwarz, S., Ponce-Vargas, S. M., Licea-Claverie, A., & Steinbach, C. (2012). Chitosan and mixtures with aqueous biocompatible temperature sensitive polymer as flocculants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 7-12.

Shazia M., Ijaz A. B., Mohammad Z., Haq N. B.,& Muhammad S., (2017) Study of the UV protective and antibacterial properties of aqueous polyurethane dispersions extended with low molecular weight chitosan. International Journal of Biological Macromolecules, 94(A)51-60

Somasundaran, P. (2006). Encyclopedia of surface and colloid science (Vol. 1): CRC press.

Sperling, L. H. (2005). Introduction to physical polymer science: John Wiley & Sons.

Steenkamp, G. C., Keizer, K., Neomagus, H. W. J. P., & Krieg, H. M. (2002). Copper(II) removal from polluted water with alumina/chitosan composite membranes. Journal of Membrane Science, 197(1), 147-156.

Stern, R., Asari, A. A., & Sugahara, K. N. (2006). Hyaluronan fragments: an information-rich system. European Journal of Cell Biology, 85(8), 699-715.

Suni, S., Kosunen, A. L., Hautala, M., Pasila, A., & Romantschuk, M. (2004). Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Marine Pollution Bulletin, 49(11-12), 916-921.

Synowiecki, J., & Al-Khateeb, N. A. (2003). Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci Nutr, 43(2), 145-171.

Usman, A., Zia, K. M., Zuber, M., Tabasum, S., Rehman, S., & Zia, F. (2016). Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol, 86, 630-645.

Walton, J. (2013). Aluminum involvement in the progression of Alzheimer's disease. Journal of Alzheimer's Disease, 35(1), 7-43.

Ward, R. J., McCrohan, C. R., & White, K. N. (2006). Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquat Toxicol, 77(2), 222-228.

Wissing, S. A., & Müller, R. H. (2003). The influence of solid lipid nanoparticles on skin hydration and viscoelasticity – in vivo study. European Journal of Pharmaceutics and Biopharmaceutics, 56(1), 67-72.

Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2000). Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. Journal of Hazardous Materials, 73(1), 63-75.

Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research, 35(3), 613-618.

Xiao, C., & Luong, J. H. (2005). Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol Appl Pharmacol, 206(2), 102-112.

Xu, Y., Bajaj, M., Schneider, R., Grage, S. L., Ulrich, A. S., Winter, J., & Gallert, C. (2013). Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization. Microbial Cell Factories, 12(1), 90.

Yang, C., Li, B., Ge, M., Zhou, K., Wang, Y., Luo, J.,Sun, G. (2014). Inhibitory effect and mode of action of chitosan solution against rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae RS-1. Carbohydr Res, 391, 48-54.

Yang, R., Li, H., Huang, M., Yang, H., & Li, A. (2016). A review on chitosan-based flocculants and their applications in water treatment. Water Res, 95, 59-89.

Yun, C. H., Park, Y. H., & Park, C. R. (2001). Effects of pre-carbonization on porosity development of activated carbons from rice straw. Carbon, 39(4), 559-567.

Zhao, F., Yu, B., Yue, Z., Wang, T., Wen, X., Liu, Z., & Zhao, C. (2007). Preparation of porous chitosan gel beads for copper(II) ion adsorption. J Hazard Mater, 147(1-2), 67-73.

Zhu H.Y., Jiang R., Xiao L. (2010), Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites.Applied Clay Science 48, 522–526

Zikakis, J. (2012). Chitin, chitosan, and related enzymes: Elsevier.

王西華,1999,食品微生物學,藝軒圖書出版社。

王聖予、李麗俐、吳秀玲、周啟馥、楊志元、陳建和,2004,最新醫學微生物,原著/Murray;Robayashi;Pfaller,藝軒圖書出版社。

吳波、周美華,吸油材料綜述,http://www.paper.edu.cn

呂佩璇,2013,功效型幾丁聚醣液相吸附天然有機質、染料與重金屬之動力學與等溫平衡,國立聯合大學化學工程學系研究所碩士論文。

呂卦南,2006,幾丁質與幾丁聚醣織製備與鑑定,康寧學報8,157–170頁

周純芬、彭洪文,2005,微生物學速成,原著/J.Nicklin;K.GraemeCook;R.Killington,合記圖書出版社。

林怡君,2007,以酵素法產製之幾丁聚醣水解物特性及其抗菌活性之研究,國立宜蘭大學食品科學系研究所碩士論文。

林海、王澤甲、汪涵、薛秋玉、朱亦珺,2012,天然生物質材料吸油性能研究功能材料,第17期(43)卷,2412-2415頁。

邱顯堂,2000,介相石墨掺混高分子之加工及吸油性能研究,石油暨石化科技產業科技學術合作期末報告

徐興明,2007,特用化學品,全威圖書有限公司,65-68頁

高肇藩,1978,給水工程 (衛生工程。自來水篇),編著者發行,台南.

國際油輪船東污染組織(ITOPF),油類洩漏對應措施中吸油材料之應用,技術資料論文

經濟部生技醫藥產業發展推動小組,2017,生物技術產業簡介。

萬孟瑋,2010,蝕刻廢液製備聚合鐵混凝劑應用於染整廢水之可行性研究,嘉南藥理科技大學環境工程與科學系研究所碩士論文。

蔡文城,2000,實用臨床微生物診斷學,九州圖書文物有限公司。

陳麗貞,2016,無機性廢水處理,行政院環境保護署環境人員訓練所,廢(污)水處理專責人員訓練教材,逢甲大學印製。

電子全文 電子全文(網際網路公開日期:20221231)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔