跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李昱澄
研究生(外文):LI,YU-CHENG
論文名稱:光纖凡德瓦力現象之研究
論文名稱(外文):Investigation on van der Walls effect in optical fibers
指導教授:陳逸寕
指導教授(外文):Chen,Yi-Ning
口試委員:陳南光 呂海涵 廖顯奎 陳逸寕
口試委員(外文):NAN-KUANG CHEN LU,HAI-HAN LIAW,SHIEN-KUEI CHEN,YI-NING
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:32
中文關鍵詞:凡德瓦力
外文關鍵詞:VAN DER WALL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究中,主要探討將光纖拉到直徑10m以下時,所產生的表面電荷,我們都知道光纖是由熔融二氧化矽所製作而成的,且是個介電物質不會自己產生電荷。熔融二氧化矽在[SiO 4] -四面體的周期長度尺度上與玻璃和結晶二氧化矽不同。使光纖帶有固定的正電荷或負電荷的方法很簡單,就是利用羊毛或橡膠以及絲綢。然而光纖裏頭的靜電荷不能長時間在潮濕的環境下。此外二氧化矽分子是一個四面體,每個矽周圍結合4個氧,最小環上有6個矽原子和六個氧原子,矽在中心,氧在四個頂角。其中氧-矽-氧鍵的角度約為109.5度,因此矽跟氧的電負度差很大,使得電子被更強烈的吸附,導致電荷分布不均勻。四面體的中心部分和四個角分別更多地帶正電和帶負電,以產生每個矽與氧鍵的電偶極子。然而,對於四面體,四個偶極子指向不同的方向以彼此抵消,因此在該結構中不產生淨偶極子。所以具觀上來看,二氧化矽是電中性的。當四面體受到拉伸(包括微拉伸和壓縮力)沿著同一個方向時,4個偶極子就不能相互抵銷了,因此二氧化矽絲是因為表面極化而帶有不同的電荷。以二氧化矽光纖為例,二氧化矽光纖的纖殼直徑為125um不易帶電,所以要在光纖直徑比較細的時候才容易產生電荷,然而當光纖經由火焰熔拉或光學蝕刻把直徑減少時,局部的電偶極子就會自動產生不平衡,這是因為原本在三維方向上的二氧化矽四面體網路是對稱的,但是經過熔拉或者光學蝕刻時,就形成類似一維的結構了,而電偶極子排列沿著橫向與軸向,而產生的電偶極子可以吸引像是紙或棉片的微小粒子,且這個新引力隨著光鮮直徑的地點而增加。有趣的是,電荷圍繞著圓柱體的光纖,這是因為矽原子被氧原子包圍所產生的,而在光纖鐘永久電偶極子與外部的微小粒子是屬於靜電吸引力中的凡德瓦力。這個有趣的現象已經被提出來,利用微型光纖來吸附帶有正電的煙塵粒子,且這些粒子有週期性的排列在光纖上,來形成光纖光柵。由於光纖會產生電子極化,所以可以用外加電壓來控制。
It is well known that optical fiber is made of fused silica, SiO2, which is a dielectric material and does not produce electric charges by itself. The fused silica is different from glass and crystalline silica in the periodicity length scale of [SiO4]4- tetrahedron and the ordering is in the preference of glassy network to form rings of 6 tetrahedra . A simple way to make optical fiber carry immobile positive or negative charges is to rubber it with silk or wool, respectively. However, the static charges in fiber can not last for a long time in the open air due to humidity. In addition, it is important to note that silica molecule has a tetrahedron unit with four oxygen atoms at the corners to surround the central silicon atom in a cubic symmetry
The angle of O-Si-O bond is about 109.5um and thus the Si-O bond is highly polar due to large electronegativity difference and the electrons are more strongly attracted by oxygen to result in uneven charge distribution. The central part and the four corners of tetrahedron is more positively and negatively charged, respectively, to generate electric dipole along each Si-O bond. However, for tetrahedron, the four dipoles point at different directions to cancel each other and thus no net dipole is created in this structure . Macroscopically, silica fiber is amorphous and electrically neutralized. This natural property changes a lot when the tetrahedron is deformed by stress including micro tensile and compressive forces along a certain direction so that the four dipoles are not be able to completely cancel. Consequently, the silica wire is electrically polarized to carry unbalanced electric charges. To make standard silica fiber with a 125um-diameter cladding polarized is difficult due to the thick thickness. However, when fiber is thinned down to a wavelength scale by flame tapering or chemical-etching, microscopically, the local unbalanced electric dipoles are automatically created. This is because the silica tetrahedron networks were originally omnidirectional symmetric in 3 dimensions but were further transformed into a structure more like a 1 dimensional wire. The created electric dipoles coming from hugely asymmetric fiber structure along transverse and axial directions can attract external small objects like paper and cotton pieces and the attracting force increases with decreasing fiber diameter. Interestingly, the fiber is cylindrically negatively charged on its surface because the Si4+ atom is always surrounded by oxygen atoms. This electrostatic attractive force between permanent dipoles in fiber and in external micro particles is one kind of van der Walls force. This interesting phenomenon has recently been proposed to make fiber gratings on micro fiber by attracting micro positively charged smoking particles to periodically cluster on micro fiber . Since the micro fiber can be electrically polarized, it can thus be controlled by an external electric source.

摘要……………………………………………………………I
Abstract………………………………………………………III
致謝……………………………………………………………III
目錄……………………………………………………………V
圖目錄…………………………………………………………IX
表目錄…………………………………………………………XI
第一章 緒論………………………………………………1
1-1 前言…………………………………………………1
1-2 研究動機……………………………………………2
1-3 傳感器簡介…………………………………………2
1-4 論文架構……………………………………………4
第二章 凡德瓦力……………………………………….5
2-1 凡德瓦力……………………………………………5
2-1-1 Debye force…………………………………….6
2-1-2 Keesom force…………………………………..7
2-1-3 倫敦色散力………………………………………8
第三章 實驗架構……………………………………….9
3-1微型光纖式陡變熔拉干涉儀演進…………………9
3-2 SAT-MFI對奈米粒子感測架構實驗………………15
第四章 實驗數據與討論……………………………….17
4-1不同纖芯型狀對於凡德瓦力影響…………………18
4-2 乾燥與濕度度於凡德瓦力的影響…………………….20
4-3 酸鹼值對於凡德瓦力的影響………………………….21
4-4 線香與感測器的距離影響…………………………….22
4-5 不同總類對於煙塵粒子周期影響…………………….24
4-6 溫度對於煙塵粒子的影響…………………………….26
4-7 相同直徑對於不同電壓的距離變化………………….27
4-8 線圈的多寡與店壓的關係…………………………….28
第五章 結論與外來展望…………………………………..29
5-1 結論…………………………………………………….29
5-2 未來展望……………………………………………….30
參考資料…………………………………………………………31
論文著作…………………………………………………………32.




圖目錄
圖( 一) 偶極-導偶極示意圖[14] 6
圖( 二)兩分子之間偶極-偶極示意圖[14] 7
圖( 三)倫敦色散力示意圖[15] 8
圖( 四)透鏡式Mach-Zehnder interferometer示意圖 10
圖( 五)傳統光纖式Mach-Zehnder interferometer示意圖 11
圖( 六)陡變熔拉馬赫-曾德干涉儀示意圖 12
圖 七 AT-MZI干涉頻譜[17] 12
圖( 八)陡變熔拉馬赫-曾德干涉儀具有微陡變熔拉點示意圖 13
圖( 九) SAT-MFI架構示意圖[17] 13
圖( 十) SAT-MFI架構示意圖 14
圖( 十一) SAT-MFI干涉原理示意圖 14
圖 12 15
圖( 十三) 實驗架構 16
圖 十四扁殼光纖不同角度 (a)0度 (b)30度 (c)60度 (d)90度 18
圖 十五 (a)相對溼度20% (b)相對濕度40% 20
圖 十六 (a)浸泡於硫酸中 (b)浸泡於小蘇打中 21
圖 十七 (a)線相距離2公分處 (b)線相距離4公分處 (c)線香距離6公分處 23
圖 十八 (a) 633光纖 (b) 無芯光纖 (c) 光敏光纖 (d)扁殼光纖 24
圖 十九 烙鐵靠近前 26
圖 二十烙鐵靠近後 26
圖 二十一當電壓高於6KV時光纖會被感應起電 27
圖 二十二兩個線圈互相纏繞 28



表目錄
表格 1..........5
表格 2.........19
表格 3.........20
表格 4.........21
表格 5.........23
表格 6.........25
表格 7.........26


[1] https://en.wikipedia.org/wiki/Optical_fiber
[ 2] HOPKINS, H. H., & KAPANY, N. S. (1954). A flexible fibrescope, using static scanning. Nature, 173(4392), 39-41.
[ 3] https://en.wikipedia.org/wiki/Optical_fiber
[ 4] https://www.inside.com.tw/2017/02/06/china-new-fiber
[ 5] http://www.kmuh.org.tw/www/kmcj/data/10601/3.htm
[ 6] Turpin, M., Vignolle, J. M., Charasse, M. N., & Le Pesant, J. P. (1991). U.S. Patent No. 5,064,270. Washington, DC: U.S. Patent and Trademark Office.
[ 7] http://www.ym.edu.tw/biophotonics-ultrasound-lab/research/optical_fiber_new.htm
[ 8] Hocker, G. B. (1979). Fiber-optic sensing of pressure and temperature. Applied optics, 18(9), 1445-1448.
[ 9] Bariain, C., Matı́as, I. R., Arregui, F. J., & Lopez-Amo, M. (2000). Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sensors and Actuators B: Chemical, 69(1), 127-131.
[ 10] Sirkis, J., Berkoff, T. A., Jones, R. T., Singh, H., Kersey, A. D., Friebele, E. J., & Putnam, M. A. (1995). In-line fiber etalon (ILFE) fiber-optic strain sensors. Journal of lightwave technology, 13(7), 1256-1263.
[ 11] Polynkin, P., Polynkin, A., Peyghambarian, N., & Mansuripur, M. (2005). Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels. Optics letters, 30(11), 1273-1275.
[ 12] http://chemistry.bd.psu.edu/jircitano/IMforces.html
[ 13] http://www.masterorganicchemistry.com/2010/10/01/how-intermolecular-forces-affect-boiling-points/
[ 14] http://www.science.uwaterloo.ca/~cchieh/cact/c123/intermol.html
[ 15] https://www.ch.ntu.edu.tw/~gcuni90/lifesci/bullte/interaction.htm
[ 16] https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s15-02-intermolecular-forces.html
[ 17]Chen, N. K., & Feng, Z. Z. (2010). Effect of gain-dependent phase shift for tunable abrupt-tapered Mach–Zehnder interferometers. Optics letters, 35(12), 2109-2111.
[ 18]Chen, N. K., Yang, T. H., Chen, Y. N., Chen, Z. Y., & Liaw, S. K. (2013, June). High sensitivity tapered fiber Mach-Zehnder interferometer with optical attractive near-field force for active microsensing. In CLEO: Science and Innovations (pp. JW2A-64). Optical Society of America.
[ 19] Chen, N. K., Chuang, S. W., He, K. Y., & Chen, Y. N. (2014, November). Investigation of temperature independence in highly sensitive fiber strain sensor based on microfiber interferometer. In Asia Communications and Photonics Conference (pp. AW3I-4). Optical Society of America.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top