跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/30 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林冠霆
研究生(外文):LIN, GUAN-TING
論文名稱:具咔唑與苯並咪唑結構之雙極性主體材料應用於高效率藍色磷光有機發光元件
論文名稱(外文):Bipolar host materials with carbazole and benzimidazole used in high efficiency blue phosphorescence organic light-emitting device
指導教授:龔吉和林奇鋒林奇鋒引用關係
指導教授(外文):KUNG, JERRY-HOLIN, CHI-FENG
口試委員:李君浩梁文傑邱天隆
口試委員(外文):LEE, JIUN-HAWLEUNG, MAN-KITCHIU, TIEN-LUNG
口試日期:2017-05-16
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:154
中文關鍵詞:雙偶極主體發光材料藍色磷光有機發光二極體
外文關鍵詞:bipolarhost materialsBlue OLED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究高效率藍色磷光發光元件(organic light-emitting device, OLED),藉由咔唑(carbazole)基團並搭配苯並咪唑 (benzimidazole) 基團來合成3支雙極性(bipolar)的藍色磷光主體材料(host),咔唑(carbazole)基團具有傳導電洞的能力,也會提升材料的三重態能量,而苯並咪唑 (benzimidazole) 基團具有傳導電子的能力,藉由這樣的設計,使元件對於電洞及電子都有較優越的傳導能力。在元件設計中,我們使用目前商業上常見的材料FIrpic為發光體,並使用TAPC作為電洞傳輸層、mCP為電子阻擋層、DPPS為電子傳輸層,藉由調變客體發光材料的參雜濃度以及各膜層的厚度,期許在材料中達成載子平衡,最後可以擁有最佳的效率。在2-Cbzbiz有44.07 cd/A、39.63 lm/W的電流與功率效率和20.42%的外部量子效率;3-Cbzbiz有62.04 cd/A、64.02 lm/W的電流與功率效率和28.78%的外部量子效率;4-Cbzbiz則有61.94 cd/A、63.10 lm/W的電流與功率效率和30.04%的外部量子效率。
此外,我們亦引入o-4Cbz來當作電子侷限層(electron blocking layer, EBL) 取代原本的mCP,在套用入使用4-Cbzbiz的最佳化結構後,可更進一步的將效率提升至64.09 cd/A、66.3 lm/W和30.91%的外部量子效率。

In this thesis, we demonstrated the highly efficiency blue phosphorescent organic light-emitting devices (OLEDs) with three bipolar host materials which were synthesized with carbazole and benzimidazole group. The carbazole group provide the great hole transporting ability and also enhance the triplet energy for blue phosphorescent emitter. Meanwhile, the benzimidazole group provide the electron transporting ability, result in the bipolar transporting characteristics of the host materials. The OELD structures were consist with TAPC as the hole transporting layer (HTL), DPPS as the electron transporting layer (ETL), mCP as the electron blocking layer (EBL), FIrpic as the blue phosphorescent emitter, and various host materials; 2-Cbzbiz, 3-Cbzbiz, and 4-Cbzbiz, as the emitting layer (EML). For device optimizations, various FIrpic concentrations were applied first and then the thickness of each layers were modified to control the recombination zone and charge balance condition. The optimums devices with various host materials showed the efficiency of 44.07 cd/A, 39.63 lm/W, and 20.42% of EQE with 2-Cbzbiz, 62.04 cd/A, 64.02 lm/W, and 28.78% of EQE with 3-Cbzbiz, and 61.94 cd/A, 63.10 lm/W, and 30.04% of EQE with 4-Cbzbiz.
Furthermore, we introduced o-4Cbz to replace mCP as the blocking layer into the optimized device with 4-Cbzbiz host to improve the device efficiency in further and finally result in the device efficiency of 64.09 cd/A, 66.3 lm/W, and 30.91% of EQE.

誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 有機發光元件發展歷史 2
1.3 有機發光元件發光原理 3
1.3.1 有機發光元件發光機制 5
1.4 有機發光元件材料 6
1.5 主體材料發展 12
1.6 研究動機 15
第二章 有機發光二極體實驗製程與量測介紹 17
2.1 黃光顯影製程 17
2.2 蒸鍍製程 19
2.2.1 ITO表面氧電漿處理: 19
2.2.2 真空熱蒸鍍製程 20
2.2.3 元件封裝 22
2.3 有機發光元件之量測系統 23
第三章 新穎主體材料 26
3.1 各主體材料特性 26
3.2 各主體材料之唯載子元件 31
第四章 不同主體材料對藍色磷光元件之表現 36
4.1 2-Cbzbiz藍色磷光主體材料元件討論 36
4.1.1 FIrpic濃度討論 37
4.2 3-Cbzbiz藍色磷光主體材料元件討論 41
4.2.1 FIrpic濃度討論 41
4.2.2 電子傳輸層厚度討論 45
4.2.3 發光層厚度討論 49
4.2.4 電子侷限層厚度討論 54
4.2.5 分區摻雜對元件的影響探討 59
4.3 4-Cbzbiz藍色磷光主體材料元件討論 66
4.3.1 FIrpic濃度討論 66
4.3.2 電子傳輸層厚度討論 69
4.3.3 發光層厚度討論 75
4.3.4 電子侷限層厚度討論 79
4.3.5 分區摻雜對元件的影響探討 84
4.4 元件總表 91
4.5 結論 94
Reference 95
附錄 101
I 3-Cbzbiz 102
I.I 分區不摻雜對元件的影響 102
I.II 電子侷限層(TCP)厚度討論 105
I.III 混合式發光層厚度調變 111
II 4-Cbzbiz 116
II.I 電洞傳輸層的厚度 116
II.I. 電子傳輸層的厚度 121
II.II 混合式發光層厚度調變 126
II.III 混合式發光層混合比例調變 131
II.IV 混合式電洞傳輸層及發光層 135
II.V 混合雙主體材料之發光層 138
II.VI 混合式電洞傳輸層、發光層及電子傳輸層 142
II.VII 電洞注入層配合最佳結構 146
III TREL量測 151

[1] K. Udagawa, H. Sasabe, F. Igarashi, and J. Kido, “ Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Effi ciency Roll-Off at High Brightness in Blue Phosphorescent OLEDs ” Adv. Optical Mater., 4, 86–90, 2016.
[2] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, “Highly efficient organic light-emitting diodes from delayed fluorescence ” Nature 492, 234–238, 2012.
[3] W. Helfrich, W. G. Schneider, “ Recombination Radiation in Anthracene Crystals ”, Phys. Rev. Lett. 14, 229, 1965.
[4] D. F. Williams, M. Schadt, “A simple organic electroluminescent diode ”, Proc. IEEE. 58, 476, 1970.
[5] C. W. Tang, S. A. VanSlyke, “ Organic electroluminescent diodes ”, Appl. Phys. Lett., 51, 913, 1987.
[6] C. W. Tang, S. A. VanSlyke, C. H. Chen, “ Electroluminescence of doped organic thin films ”, Appl. Phys., 65, 3610, 1989.
[7] W.D. Gill, “ Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole ”, J. Appl. Phys., 43, 5033, 1972.
[8] J. Ye, H. Chen, M. Shi, and M. Wang, “ Recent development of organic electron transport materials ”, Progress in Natural Science, 13, 81, 2003.
[9] H. Suzuki, S. Hoshino, “ Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes ”, J. Appl. Phys., 79, 8816, 1996.
[10] M. Uchida, C. Adachi, T. Koyama, Y. Taniguchi, “ Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes ”, J. Appl. Phys., 86, 1680, 1999.
[11] S. Lamansky, R. C. Kwong, M. Nugent, P. I. Djurovich, M. E. Thompson, “ Molecularly doped polymer light emitting diodes utilizing phosphorescent Pt(II) and Ir(III) dopants ”, Org. Electron., 2, 53, 2001.
[12] S. Lamansky, P. I. Djurovich, F. Abdel-Razzaq, S. Garon, D. L. Murphy, and M. E. Thompsona, “ Cyclometalated Ir complexes in polymer organic light-emitting devices ”, J. Appl. Phys., 92, 1570, 2002.
[13] G. He, Y. Li, J. Liu, Y. Yang, “ Enhanced electroluminescence using polystyrene as a matrix ”, Appl. Phys. Lett., 80, 4247, 2002.
[14] X. J. Wang, M. R. Andersson, M. E. Thompson, O. Inganäs, “ Formulation and study of thermal–mechanical coupling for saturated porous media ”, O. Synth. Met., 137, 1019, 2003.
[15] X. Gong, J. C. Ostrowski, D. Moses, G. C. Bazan and A. J. Heeger, “ Electrophosphorescence from a polymer guest-host system with an iridium complex as guest: Forster energy transfer and charge trapping ”, Adv. Funct. Mater., 13, 439, 2003.
[16] N. Kikuchi, E. Kusano, E. Kishio, A. Kinbara, H. Nanto, “ Effects of excess oxygen introduced during sputter deposition on carrier mobility in as-deposited and postannealed indium-tin-oxide films ”, J. Vac, Sci. Technol. A, 19, 1636, 2001.
[17] A. Kaijou, M. Ohyama, M. Shibata, K. Inoue, “ Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material ”, United States Patent. US005972527A. 1999.
[18] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, T. J. Marks, “ Indium Tin Oxide Alternatives¬—High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes ”, Adv. Mater. 2001, 13, No. 19, October 2.
[19] S. A. Van Slyke, C. H. Chen, C. W. Tang, “ Organic electroluminescent devices with improved stability ”, Appl. Phys. Lett. 69 (15), 7 October 1996.
[20] C. M. Hsu, W. T. Wu, “ Improved characteristics of organic light-emitting devicesby surface modification of nickel-doped indium tin oxide anode ”, Appl. Phys. Lett., 85, 840–842, 2004.
[21] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, “ Endothermic energy transfer:A mechanism for generating very efficient high-energy phosphorescent emission in organic materials ”, Appl. Phys. Lett., Vol. 79, No. 13, 24 September 2001.
[22] S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu, C. H. Chen, “ New Dopant and Host Materials for Blue-Light-Emigging Phosphorescent Organic Electroluminescent Devices ”, Adv. Mater. 2005, 17, No. 3, February 10.
[23] D. M. Pai, J. F. Yanus, M. Stolka, “ Trap-Controlled Hopping Transport ”, J. Phys. Chem. 1984, 88, 4714-4717.
[24] H. Kanai, S. Ichinosawa, Y. Sato, “ Effect of aromatic diaminers as a cathode interface layer ”, Synthetic Met. 1997, 91, 195-196.
[25] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, “ Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials ”, Appl. Phys. Lett., Vol. 79, No. 13, 24 September 2001.
[26] R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon, M. E. Thompson, “ Blue organic electrophosphorescence using exothermic host-guest energy transfer ”, Appl. Phys. Lett., Vol. 82, No. 15, 14 April 2003.
[27] M. Kim, J. Y. Lee, “ Engineering the Substitution Position of Diphenlphosphine Oxide at Carbazole for Thermal Stability and High External Quantum Efficiency Above 30% in Blue Phosphorescent Organic Light-Emitting Diodes ”, Adv. Funct. Mater. 2014, 24, 4164-4169.
[28] H. S. Son, C. W. Seo, J. Y. Lee, “ Correlation of the substitution position of diphenylphosphine oxide on phenylcarbazole and device performances of blue phosphorescent organic light-emitting diodes ”, J. Mater. Chem., 2011, 21, 5638-5644.
[29] B. S. Kim, J. Y. Lee, “ Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device ”, ACS Appl. Mater. Interfaces 2014, 6, 8396-8400.
[30] M. Kim, J. Y. Lee, “ Engineering of Interconnect Position of Bicarbazole for High External Quantum Efficiency in Green and Blue Phosphorescent Organic Light-Emitting Diodes ”, ACS Appl. Mater. Interfaces 2014, 6, 14874-14880.
[31] Y. Gu, Li Zhu, Y. Li, L. Yu, K. Wu, T. Chen, M.. Huang, F. Wang, S. Gong, Dongge Ma, J. Qin, C. Yang, “ Adamantane-Based Wide-Bandgap Host Material: Blue Electrophosphorescence with High Efficiency and Very High Brightness ”, Chem. Eur. J. 2015, 21, 8250-8256.
[32] H. Shin, J. H. Lee, C. K. Moon, J. S. Huh, B.Sim, J. J. Kim, “ Sky-Blue Phosphorescent OLED with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer ”, Adv. Mater. 2016, 28, 4920-4925.
[33] Y. Tao, C. Yang, J. Qin, “ Organic host materials for phosphorescent organic light-emitting diodes ”, Chem. Soc. Rev., 2011, 40, 2943-2970.
[34] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, “ Highly efficient phosphorescent emission from organic electroluminescent devices ”, Nature, Vlo. 395, 10 September 1998.
[35] Y. Ma, H. Zhang, J. Shen, C. Che, “ Electroluminescence from triplet metal—ligand charge-transfer excited state of transition metal complexes ”, Synth. Met. 1998, 94, 245-248.
[36] S. J. Su, C. Cai, J. Kido, “ Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes ”, J. Mater. Chem., 2012, 22, 3447-3456.
[37] C. J. Zheng, J. Ye, M. F. Lo, M. K. Fung, X. M. Ou, X. H. Zhang, C. S. Lee, “ New Ambipolar Hosts Based on Carbazole and 4,5-Diazafluorene Units for Highly Efficient Blue Phosphorescent OLEDs with Low Efficiency Roll-Off ”, Chem. Mater. 2012, 24, 643-650.
[38] H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y. J. Pu, J. Kido, “ 3,3’-Bicarbazole-Based Hosts Materials for High-Efficiency Blue Phosphorescent OLEDs with Extremely Low Driving Voltage ”, Adv. Mater. 2012, 24, 3212-3217.
[39] S.-J. Su, C. Cai, J. Kido, “ RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations ”, Chem. Mater. 2011, 23, 274-284.
[40] H. H. Chou, C. H. Cheng, “ A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs ”, Adv. Mater. 2010, 22, 2468-2471.
[41] H. H. Chou, H. H. Shih, C. H. Cheng, “ Triptycene derivatives as high-Tg host materials for various electrophosphorescent devices ”, J. Mater. Chem., 2010, 20, 798-805.
[42] W. Li, J. Qiao, L. Duan, L. Wang, Y. Qiu, “ Novel fluorine/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices ” Tetrahedron, 63, 41, 2007, 10161-10168.
[43] J. He, H. Liu, Y. Dai, X. Ou, J. Wang, S. Tao, X. Zhang, P. Wang, D. Ma, “ Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs ”, J. Phys. Chem. C, 2009, 113, 6761-6767.
[44] A. Chaskar, H. F. Chen, K. T. Wong, “ Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices ”, Adv. Mater. 2011, 23, 3876-3895.
[45] 黃倉秀等,「有機半導體電極界面能障及電流傳導機制研究」,行政院國家科學委員會專題研究計畫 (2005)
[46] C. C. Wu, C. I. Wu, J. C. Sturm, A. Kahn, “ Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices ”, Appl. Phys. Lett., 70, 1348, 1997.
[47] 陳金鑫、黃孝文,「 有機電激發光材料與元件」,(2007)。
[48] 張書昀,咔唑與苯並咪唑碳氮連接之雙極性衍生物之合成、性質探討以及在有機發光二極體之應用,台灣大學,碩士論文,民國105年
[49] 洪御翔,高外部量子效率之藍色磷光有機發光二極體,元智大學,碩士論文,民國104年
[50] 高煥捷,藍色磷光有機發光二極體及交流電驅動有機發光二極體之研究,元智大學,碩士論文,民國105年

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊