跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊孟翰
研究生(外文):YANG,MENG-HAN
論文名稱:連續波與脈衝波之波長可調外部共振腔半導體雷射之研究
論文名稱(外文):Study of Continuous and Pulse Wave Tunable Wavelength Semiconductor Laser with External Cavity
指導教授:龔祖德
指導教授(外文):KUNG,TSU-TE
口試委員:洪境祥古昀生
口試委員(外文):HORNG,JING-SHYANGKU,YUN-SHENG
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:光電工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:66
中文關鍵詞:連續波雷射脈衝波雷射波長可調雷射外部共振腔半導體雷射
外文關鍵詞:CW Laserpulse lasertunable wavelength laserexternal cavitysemiconductor laser
相關次數:
  • 被引用被引用:2
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們設計一個簡易的架構,利用Fabry-Perot多模態半導體雷射加上一波長可調之外部共振腔,利用波長可調的濾波器,產生單一模態輸出的效果。本論文分為兩大研究主題,一為連續波直接濾波和外部共振腔控制半導體雷射,另一為脈衝波外部共振腔控制半導體雷射。
連續波直接濾波實驗結果發現,濾出來的各單一模態對應原本Fabry-Perot半導體雷射之模態,只有達到濾波的效果,模態的邊模壓縮比最大與最小差異有37 dB。濾波後各模態峰值功率的大小與未經濾波之Fabry-Perot半導體雷射多模態之分布相似。對於1550 nm的單一模態輸出,由於鄰近的模態出現,使邊模壓縮比偏低為7.02 dB,峰值功率為-30.66 dBm。
直接濾波實驗的邊模壓縮比與峰值功率較佳之模態,中心波長分別在1551.210 nm、1552.320 nm與1553.400 nm,其峰值功率分別為-16.88 dBm、-17.02 dBm與-17.66 dBm,邊模壓縮比分別為44.37 dB、43.85 dB與43.56 dB。
外部共振腔實驗結果發現,經外部迴路濾波後的各單一模態輸出之峰值功率都很平均,最大與最小之功率差異小於1 dB,且與中心波長1550 nm模態間距較遠的各個單一模態輸出功率都有明顯的被放大,輸出功率比直接濾波的功率較大,這說明外部共振腔會將通過濾波器的模態,入射回Fabry-Perot半導體雷射的內部共振腔裡面,使被選取的模態得到最大的共振腔增益;也因為被選取的模態,在內部共振腔較其它的模態擁有更多的增益,所以邊模壓縮比也相對的提高。例如:直接濾波後中心波長在1543.470 nm之模態,其峰值功率為-45.55 dBm、邊模壓縮比為23.90 dB;外部共振腔濾波後中心波長在1543.530 nm之模態,其峰值功率為-29.14 dBm、邊模壓縮比為37.27 dB 都明顯較直接濾波的結果提高甚多。
脈衝波實驗結果發現各單一模態中,如果光譜分析儀上所量測的光譜線寬越寬的話,數位分析儀上面所顯示的脈衝寬度會越窄,最小可以達到36.34 ps,兩者為傅立葉轉換之關係。脈衝雷射實驗中,在做實驗過程中發現,仔細微調可調式光纖濾波器,可以改變同一個中心波長附近之雷射輸出的光譜分布,進而影響脈衝寬度的大小,觀察發現在頻域裡面單一模態中,短波長的成分之峰值功率較高時,時域裡的脈衝寬度會較窄,時域上的脈衝會有一個較小的邊模在右邊;相反地,若長波長的成分之峰值功率較高時,時域裡的脈衝會比較寬。

A simple architecture constructed by a Fabry-Perot multimode semiconductor laser with an external cavity and wavelength tunable filter, which was used to achieve tunable single-mode lasing. There are two major studies in the thesis, one is semiconductor laser controlled respectively by direct filtering and external cavity to obtain a continuous wave single-mode laser output, the other is concentrated on the external cavity with pulse single-mode output.
In the experiment of continuous wave direct filtering, the filtering individual mode was observed corresponding to the original modal distribution of Fabry-Perot semiconductor laser. The maximum and minimum side mode suppression ratio (SMSR) of the filtering modes have a difference of 37 dB. The peak power of each filtering mode is similar to the original distributions of Fabry-Perot semiconductor laser. Due to the appearance of the side mode, a SMSR of 7.02 dB and peak power of -30.66 dBm were obtained in the single-mode with center wavelength of 1550 nm.
The superior SMSR and the peak power of the filtering modes exist in the center wavelength of 1551.210, 1552.320, and 1553.400 nm with the SMSR of 44.37, 43.85, and 43.56 dB, respectively and the peak power of -16.88, -17.02, and -17.66 dBm, respectively.
In the experiment of external cavity, the modes filtering through the loop cavity with the maximum and minimum difference of peak power is less than 1 dB. Deviate from the center wavelength of 1550 nm, the modes have a larger peak power than the direct filtering mode experiment. This shows the filtering mode by the external cavity will feedback to the inner resonator of the Fabry-Perot semiconductor laser to obtain the maximum gain of the cavity and to achieve a larger value of SMSR. For example, the direct filtering mode at the center wavelength of 1543.470 nm, the peak power and SMSR are -45.55 dBm and 23.90 dB, respectively. While in the external cavity filtering mode at the center wavelength of 1543.530 nm, the better results of peak power and SMSR were obtained with the value of -29.14 dBm and 37.27 dB, respectively.
In the pulse wave external cavity experiment, the line width of each single-mode measured on the optical spectrum analyzer and the pulse width measured on the digital communication analyzer exists in a relation of the Fourier transformation. The larger line width of the single-mode will has a smaller pulse width. The minimum pulse width of 36.34 ps was obtained in this experiment.
In the pulsed laser experiment, by fine tuning of the optical fiber filter can obtain the result of different spectral components within each single-mode and simultaneously affect the pulse width of this mode. This can be observed by the shorter spectral components with a larger peak power in a single-mode distribution will has a narrower value of pulse width in the time domain.

中文摘要
Abstract
誌謝
目錄
圖目錄
表目錄
第一章 緒論
1.1研究背景
1.2 研究動機
第二章 半導體雷射簡介
2.1半導體雷射工作原理
2.1.1 半導體雷射結構
2.1.2 半導體雷射操作特性
2.2半導體雷射種類
2.2.1 Fabry-Perot雷射
2.2.2 DFB雷射與DBR雷射
2.2.3垂直共振腔面射型雷射
2.3 半導體雷射輸出特性
第三章 連續波外部共振腔控制半導體雷射
3.1 實驗架構
3.1.1 Fabry-Perot半導體雷射光譜特性量測
3.1.2可調式光纖濾波器直接濾波之架構
3.1.3 外部環形共振腔迴路濾波之架構
3.2實驗結果
3.2.1直接經過可調式光纖濾波器
3.2.2利用外部共振腔迴路作濾波
3.3實驗數據分析與討論
3.3.1 直接濾波數據分析與討論
3.3.2 外部共振腔數據分析與討論
第四章 脈衝波外部共振腔控制半導體雷射
4.1實驗架構
4.2實驗結果
4.3實驗數據分析與討論
第五章 總結與未來研究方向
參考文獻


[1] A. L. Schawlow, and C. H. Townes, “Infrared and optical masers,” Physical Rev., pp. 112, 1958.
[2] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, 187, pp. 493-494, 1960
[3] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett., vol. 1, pp. 91-92, 1962.
[4] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, pp. 366-367, 1962.
[5] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill Jr, & G. Lasher, “Stimulated emission of radiation from GaAs p-n junctions,” Appl. Phys. Lett. 1, pp. 62-64, 1962
[6] Nick Holonyak Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett. vol. 1, pp. 82-83. 1962
[7] H. Kroemer, “A proposed class of hetero-junction injection lasers,” Proceedings of the IEEE, 51, pp. 1782-1783, 1963.
[8] M. B. Panish, I. Hayashi, and S. Sumski, “Double‐Heterostructure injection lasers with room-temperature as low as 2300 A/cm2,” Appl. Phys. Lett. vol. 16, pp. 326-327, 1970.
[9] 盧廷昌、王興宗,半導體雷射導論,五南出版社, 2008,頁2-6
[10] G. P. Agrawal, and N.K. Dutta, Semiconductor Lasers,2ndEd., Van Nostrand Reinhold, 1993., pp. 319-376
[11] H. Ghafouri-Shiraz, B. S. K. Lo, Distributed feedback laser diodes: principles and physical modelling, Wiley, 1996., pp. 125-130
[12] 盧廷昌、王興宗,半導體雷射技術,五南出版社,2010.,頁2-3,222-225
[13] 董德國、陳萬清 譯,光纖通訊,東華書局, 2007.,頁218-221
[14] J. Shan Wey, J. Goldhar, and G.L. Burdge, “Active harmonic modelocking of an erbium fiber laser with intracavity Fabry–Perot filters,” IEEE J. Quantum Electron., vol. 15, pp. 1171-1180, 1997.
[15] S. Li and K.T. Chan, “Actively mode-locked erbium fiber ring laserusing a Fabry–Pérot semiconductor modulator as mode locker andtunable filter,” Appl. Phys. Lett., vol. 74, pp. 2737-2739, 1999.
[16]陳瑞鑫、陳鴻仁、林依恩、易善穠,光通訊原理與技術,全華出 版社,2004.,頁4.12-4.15
[17] G Morthier, P Vankwikelberge, Handbook of distributed feedback laser diodes, Artech House, 2013., pp. 70-75
[18] Shyh Wang, “Principles of distributed feedback and distributed Bragg-reflector lasers,” IEEE Journal of Quantum Electronics vol. 10, Issue. 4, pp. 413-427, 1974
[19] G. A. Evans and J. M. Hammer, Surface emitting semiconductor lasers and arrays, San Diego: Academic Press, 1993., pp. 217-219
[20] Y.C. Lee, and C. Shu, “Optimized operation of self-seeded gainswitched laser diode for electrically wavelength-tunable singlemode pulses,” IEEE Photon. Technol. Lett., vol. 7, pp. 275-227, 1995.
[21] S.P. Li and K.T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett., vol. 72, pp. 1954-1956, 1998.
[22] G.M. Carter and L. Zheng, “Pulse compression of CW injection seeded gain-switched diode laser,” IEEE J. Quantum Electron., vol. 28, pp. 1751-1753, 1992.
[23] D.S. Seo, H.F. Liu, D.Y. Kim, and D.D. Sampson, “Injection power and wavelength dependence of an external-seeded gain-switched Fabry-Perot laser,” Appl. Phys. Lett., vol. 67, pp. 1503-1505, 1995.
[24] Y. Matsui, S. Kutsuzawa, S. Arahira, and Y. Ogawa,“Generation of wavelength tunable gain-switched pulses from FP MQW lasers with external injection seeding,” IEEE Photon. Technol. Lett., vol. 9, pp. 1087-1089, 1997.
[25] Y. Matsui, S. Kutsuzawa, S. Arahira, Y. Ogawa, and A. Suzuki, “Bifurcation in 20 GHz gain-switched 1.55-mm MQW lasers and its control by CW injection seeding,” IEEE J. Quantum Electron., vol. 34, pp. 1213-1223, 1998.
[26] J. J. Degnan, “Theory of the optimally coupled Q-switched laser,” IEEE Journal of Quantum Electronics, vol. 25(2), pp. 214-220, 1989

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top