跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/11/30 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳秉傑
研究生(外文):Bing-Jie Chen
論文名稱:多列陶瓷圓錐滾子軸承應力與安全係數分析
論文名稱(外文):Analysis of stress and safety factor of multi-row ceramic tapered roller bearing
指導教授:鄭正德
指導教授(外文):Jang-Der Jeng
口試委員:徐煒峻鄧琴書
口試委員(外文):Wei-Chun HsuChin-Shu Deng
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:機械工程學系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:87
中文關鍵詞:圓錐滾子軸承
外文關鍵詞:Tapered roller bearings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
陶瓷軸承具有優良的耐腐蝕性,非磁性,耐高溫性和高硬度。陶瓷滾柱軸承材質重量比鋼滾柱軸承低40%。這減少了離心負載和打滑,所以陶瓷軸承操作速度可以比傳統軸承快50%。
本文研究是針對多列全陶瓷與混合陶瓷圓錐滾子軸承接觸應力、變形量、模態頻率及安全係數分析。套用Hertz線接觸理論公式,計算出圓錐滾子軸承內外環接觸應力及變形量。研究結果顯示當圓錐滾子軸承受正向力負載時,軸承內環應力與變形量都大於外環應力與變形量。使用不同陶瓷材質分析結果顯示應力大小順序分別為碳化矽、氧化鋁、氧化鋯。變形量大小順序分別為氧化鋯、氧化鋁、碳化矽。研究顯示當軸承正向力的增加,接觸應力和變形量呈上升趨勢,然而軸承滾子數目數、接觸角及錐度角的增加,接觸應力皆為下降趨勢。
本研究同時應用SolidWorks Simulation有限元素軟體分析多列圓錐滾子軸承應力及安全係數,分析結果顯示軸承滾子數目數、接觸角及錐度角增加,安全係數皆為上升趨勢。以四列圓錐滾子軸承分析結果顯示應力大小順序分別為並列、交列2、交列1,然而變形量順序則相反。安全係數則以交列1最高,並列最小。本研究分析結果,期待能提供業界對圓錐滾子軸承設計開發之參考,同時能提升軸承的品質、精度及軸承使用壽命。

關鍵字:陶瓷軸承、圓錐滾子軸承、模態頻率、安全係數。
Ceramic bearings have well to excellent corrosion resistance, non-magnetic, high temp resistance and high hardness. Ceramic roller bearings weigh up to 40% less than steel roller bearings. This reduces centrifugal loading and skidding, so ceramic bearings can operate up to 50% faster than conventional bearings.
This paper is aimed at the contact stress, deformation, modal frequency and safety factor analysis of multi-row full ceramic and hybrid ceramic tapered roller bearings. The Hertz line contact theory is used to calculate the contact stress and deformation of the inner and outer rings of tapered roller bearings. The results show that when the tapered roller bearing is subjected to positive load, the stress and deformation of the inner ring are larger than those of the outer ring. The results of different ceramic materials show that the order of stress is silicon carbide, alumina oxide, and zirconia. The order of deformation is zirconia, alumina, and silicon carbide, respectively. The results show that when the bearing positive load increases, the contact stress and deformation are increasing. When the number of bearing rollers, the contact angle and the taper angle increase, the contact stress is decreasing.
In this study, the stress and safety factors of multi-row tapered roller bearings are analyzed by SolidWorks Simulation finite element software. The results show that the number of bearing rollers, the contact angle and taper angle increase, and the safety factor are all increasing. The results of the four-row tapered roller bearings show that the order of the stress is parallel type, cross 2 type, cross 1 type, but the order of deformation is opposite. The cross 1 type safety factor is the highest cross 1 type, while the parallel type safety factor is minimal. The results of this study are expected to provide the industry's reference to the design and development of tapered roller bearings, while improving the bearing quality, accuracy and bearing life.

Keywords: Ceramic bearing, Tapered roller bearings, Modal frequency, Safety factor.

目錄
摘要 …...................................................................... I
Abstract …...................................................................... II
致謝 …........................................................................III
目錄 …........................................................................IV
表目錄 …......................................................................VII
圖目錄 …......................................................................VIII
第一章 緒論...............................................................1
1-1前言...................................................................1
1-2研究動機與目的..........................................................5
1-3軸承的種類與應用.........................................................5
1-4文獻回顧................................................................13
1-5論文架構................................................................17
第二章多列陶瓷圓錐滾子軸承之幾何理論應力分析..................................18
2-1 Hertz接觸理論..........................................................18
2-2圓錐滾子軸承接觸應力…....................................................19
2-3圓錐滾子軸承接觸變形…....................................................21
第三章SolidWorks分析多列圓錐滾子軸承接觸應力.................................23
3-1繪製3D實體多列圓錐滾子軸承...............................................23
3-2 SolidWorks Simulation電腦輔助工程分析流程...............................24
3-2-1前處理(Preprocessor)...............................24
3-2-1-1選擇材料以及單位...............................24
3-2-1-2選擇雙列軸承接觸結合面..........................25
3-2-1-3雙列軸承座標系統設定............................26
3-2-1-4雙列軸承固定端設定..............................26
3-2-1-5雙列軸承負載設定................................27
3-2-2求解(Solution)...................................27
3-2-2-1網格............................................27
3-2-3後處理(Postprocessor).............................28
3-2-3-1執行雙列軸承分析並探討結果........................28
3-3模態頻率分析.........................................29
3-4安全係數分析.........................................31
第四章 結果與討論..........................................................34
4-1正向力對陶瓷圓錐滾子軸承內外環應力分析....................................34
4-2圓錐滾子長度對陶瓷軸承內環應力分析........................................35
4-3正向力對陶瓷材質軸承內外環變形量分析......................................35
4-4接觸角與錐度對陶瓷圓錐軸承應力影響分析....................................36
4-5圓錐滾子軸承應力及變形量有限元素分析......................................37
4-6陶瓷圓錐滾子軸承模態頻率有限元素分析......................................39
4-7陶瓷圓錐滾子軸承安全係數有限元素分析......................................40
第五章 結論與未來研究方向...................................................82
5-1結論...................................................................82
5-2未來研究方向............................................................84
參考文獻...................................................................85

1.H. Takebayashi, “Ceramic bearing,” Handbook of Advanced Ceramics, 2003.
2.R. Danzer, “On the relationship between ceramic strength and the requirements for mechanical design,” Journal of the European Ceramic Society, Vol. 34, pp. 3435-3460, 2014.
3.E. W. Spence and D. A. Kaminski, “Thermal evaluation of a dry nonrotating thin section contact bearing,” ASME, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 610-614, 1996.
4.S. Ai ,W. Wang , Y. Wang and Z. Zhao, “Temperature rise of double-row tapered roller bearings analyzed with the thermal network method,” Tribology International, Vol. 87, pp. 11-22, 2015.
5.L. Wang, R. W. Snidle and L. Gu, “Rolling contact silicon nitride bearing technology: a review of recent research,” Wear, Vol. 246, pp. 159-173, 2000.
6.Y. Gou and R.G. Parker, “Stiffness matrix calculation of rolling element bearings using a finite element/contact mechanics model,” Mechanism and Machine Theory, Vol. 51, pp. 32-45, 2012.
7.V. C. Tong and S. W. Hong, “The effect of angular misalignment on the running torques of tapered roller bearings,” Tribology International, Vol. 95, pp. 76-85,2016.
8.J. S. Zhao, W. Liu, Y. Zhang, Z. J. Feng, J. Ye and Q. B. Niu, “Effects of gyroscopic moment on the damage of a tapered roller bearing,” Mechanism and Machine Theory, Vol. 69, pp. 185-199, 2013.
9.X. Yang, Q. Huang and C. Yan, “Analyzing the load distribution of four-row tapered roller bearing with Boundary Element Method, ” Engineering Analysis with Boundary Elements, Vol. 56, pp. 20-29, 2015.
10. C. W. Lin, Y. K. Lin and C. H. Chu, “Dynamic models and design of spindle-bearing systems of machine tools: a review,” International Journal of
Precision Engineering and Manufacturing, Vol. 14, pp. 513-521, 2013.
11.L. Renaudin, F. Bonnardot, O. Musy, J. B. Doray and D. Rémond, “Natural roller bearing fault detection by angular measurement of true instantaneous angular speed, ” Mechanical Systems and Signal Processing, Vol. 24, pp. 1998-2011, 2010.
12.H. Wang, Q. Han and D. Zhou, “Nonlinear dynamic modeling of rotor system supported by angular contact ball bearings, ” Mechanical Systems and Signal Processing, Vol. 85, pp. 16-40, 2017.
13.N. A. Branch, N. K. Arakere, N. Forster and V. Svendsen, “Critical stresses and strains at the spall edge of a case hardened bearing due to ball, ” International Journal of Fatigue, Vol. 47, pp. 268-278, 2013.
14.R. Lakshminarayanan, L. Y. Chao, N. Iyer, and D. K. Shetty, “Wear of steel in rolling contact with silicon nitride, ” Wear, Vol. 210, pp. 278-286, 1997.
15.T. A. Stolarski, R. Gawarkiewicz and K. Tesch, “Acoustic journal bearing performance under various load and speed conditions, ” Tribology International, Vol. 102, pp. 297-304, 2016.
16.E. H. Komba, F. Massi, N. Bouscharain, G. L. Jeune, Y. Berthier and Y. Maheo, “Experimental damage analysis in high loaded oscillating bearings, ” Tribology International, Vol. 102, pp. 507-515, 2016.
17.Z. Yongqi, T. Qingchang, Z. Kuo and Li. Jiangang, “Analysis of stress and strain of the rolling bearing by FEA method, ” Physics Procedia, Vol. 24, pp. 19-24, 2012.
18. 徐稑,鄭正德,“陶瓷滾柱軸承接觸應力結構分析”,國立聯合大學碩士論文,2014。
19. 劉承威,鄭正德,“陶瓷圓錐滾子軸承應力與振動模態分析”, 國立聯合大學碩士論文,2015。
20. 陳宏鈞,王志宏,“滾動軸承保持器之動態特性研究”,國立清華大學碩士論文,2010。
21. 張榮威,楊凱琳,“以極值統計法預測軸承鋼的滾動疲勞壽命與內質分析研究”,高苑科技大學碩士論文,2008。
22. 許智凱,林棋瑋,“運用田口方法決定高速主軸軸承位置與公差之最佳設計值”,逢甲大學碩士論文,2013。
23. B. Walker, “High speed tapered roller bearing stress optimization, ” Master of Mechanical Engineering, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top