跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃紹茹
研究生(外文):Shao-Ju Huang
論文名稱:考慮作業員配置效益下應用免疫遺傳演算法求解多人工作站生產線平衡問題
論文名稱(外文):Application of IGA to Assembly Line Balancing Problems with Multi-manned Workstations Considering the Allocation Efficiency of Operators
指導教授:陳盈彥陳盈彥引用關係
指導教授(外文):Yin-Yann Chen
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:工業管理系工業工程與管理碩士班
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:生產線平衡多人工作站田口方法免疫遺傳演算法
外文關鍵詞:Line BalancingMulti-manned WorkstationTaguchi Methods;Immune Genetic Algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣在進入工業時代後以製造業為重,然而近年來台灣傳統產業面臨生產成本日益升高、勞工短缺及環保意識迅速發展等挑戰,因此對於台灣的製造業該如何在生產過程中減少過多的閒置與浪費,達到低成本高生產率是個重要課題。故本研究是以汽車製造業之多人生產線平衡問題作為探討對象,且多人生產線與傳統產線的最大不同在於工作站中操作人員配置數量。因此本研究將透過建構一套最佳化數學規劃模型,以最小化工作站數及操作人員配置數為目標,並進行相關決策分析以達到最佳配置及效率。透過田口方法的實驗設計,利用不同大小問題驗證本研究之免疫遺傳演算法的正確性後,針對結合案例公司的問題,運用免疫遺傳演算法求解,並與最佳化軟體求得之解做比較,最後針對可能影響之參數做敏感度分析。
Manufacturing business has the been key point ever since Taiwan enters industrial era. However, challenges like, the growing manufacturing cost, the emerging labor shortage and the rising environmental awareness are putting traditional industry in a even more difficult situation. How to reduce excessive wastes and achieve low-cost and high-efficiency during production have become an important topic for the industry. This research will focus on how to find the problem of balancing production lines with multi-manned workstations in Car industry. The major difference between these issues and the balancing of traditional production line is the allocation of manpower at the workstation. This research is focusing on building a optimal mathematic model to minimize the number of workstations and manpower allocation and perform the correlation between efficiency and manpower distribution. Also, using Taguchi methods, we have done different scale of experiments to prove the validity of our Immune Genetic Algorithm. After validation, we have demonstrated our Immune Genetic Algorithm by conducting experiments on cooperated company data, and compared the result with the other optimization software. In the end, we can do sensitivity correlation of possible factors by previous results.
摘要....................................................i
Abstract...............................................ii
誌謝...................................................iv
目錄....................................................v
表目錄................................................vii
圖目錄.................................................ix
第一章 緒論............................................1
1.1 研究背景與動機.......................................1
1.2 研究目的............................................2
1.3 研究範圍與假設.......................................2
1.4 研究流程.............................................3
第二章 文獻探討 ........................................6
2.1 生產線平衡問題.......................................6
2.2 多人工作站生產線平衡問題..............................8
2.3 免疫遺傳演算法.......................................9
2.4 實驗設計-田口方法...................................19
第三章 問題定義 .......................................23
3.1 定義問題............................................23
3.2 數學規劃模型 .......................................23
3.3 測試問題............................................28
第四章 演算法設計與測試................................33
4.1 免疫遺傳演算法流程..................................33
4.2 建立可行平衡解之流程(The procedure of building feasible balancing solutions)...................................40
4.3 免疫遺傳演算法參數設定...............................46
4.4 測試與驗證..........................................50
4.4.1 測試環境與測試問題................................50
4.4.2 免疫遺傳演算法驗證................................50
4.5 驗證結果...........................................52
第五章 實務案例.......................................55
5.1 案例背景說明 .......................................55
5.2 實務案例測試與結果..................................58
5.2.1 免疫遺傳演算法之測試結果...........................58
5.2.2 實務案例結果小結..................................60
5.3 參數敏感度分析......................................61
5.3.1 參數資料..........................................61
5.3.2 限制操作員數量之影響...............................62
5.3.3 操作員數限制為3人下變動Cycle time之影響............63
第六章 結論與建議.....................................66
6.1 結論...............................................66
6.2 建議...............................................66
參考文獻 ...............................................68
Extended Abstract......................................73
簡歷...................................................78
[1]孔祥林 (2009),工程品質查核標案選擇與委員指派組合之研究,國立高雄應用科技大學土木與防災研究所,碩士論文。
[2]朱紅霞、沈炯、王培紅與李益國 (2005),「基於免疫遺傳算法的模糊優化控制及其仿真」,東南大學學報,第1期,頁65-68。
[3]沈家豪 (2016),應用啟發式演算法於多人工作站生產線平衡問題,國立虎尾科技大學工業工程與管理研究所,碩士論文。
[4]李鈞 (2013),生產管理進階,前程文化事業有限公司。
[5]吳復強 (2002),田口品質工程初版,全威圖書有限公司。
[6]林李旺 (2014),突破品質水準-實驗設計與田口方法之實務應用,全華圖書股份有限公司。
[7]林昇甫、徐永吉 (2009),遺傳演算法及其應用,五南圖書出版股份有限公司。
[8]林則孟 (2012),生產計畫與管理 2/E,華泰文化事業股份有限公司。
[9]孟繁楨、楊則、胡云昌與徐慧 (1997),「具有免疫體親近性的遺傳算法及其應用」,天津大學學報,第5期,頁625-630。
[10]梁宇慧、瞿萬波與曹學山 (2008),「岩質邊坡結構面參數反應的免疫遺傳算法」,煤炭學報,第9期,頁978-982。
[11]莫宏偉 (2002),人工免疫系統原理與應用,哈爾濱工業大學出版社。
[12]張東孟 (2010),同步生產之多人工作站的生產線平衡問題之研究,淡江大學管理科學研究所,博士論文。
[13]傅合彥 (2008),生產與作業管理:建立產品與服務標竿5/e,前程文化。
[14]彭定國、項衛中 (2015),「利用斐氏網為基礎的啟發式演算法求解雙邊生產線平衡型一問題」,技術學刊,第2期,頁119-134。
[15]謝克明、謝剛、郭紅波與續欣瑩 (2005),「人工免疫系統及其算法」,電子與信息學報,第11期,頁1840-1844。
[16]聶茹、岳建華與鄧帥奇 (2010),「免疫遺傳算法及其在波阻抗反應中的應用」,計算機應用研究,第4期,頁1274-1276
[17]藍毓華、余慧文 (2011),「工作站限制下typeⅡ與typeⅢ生產線平衡之佈置」,東亞論壇季刊,472期,頁109-118。
[18]羅意茹 (2004),應用免疫演算法於可控退化率存貨問題之研究,國立嘉義大學運輸與物流工程研究所,碩士論文。
[19]蘇強、吳海龍與賴盛杰 (2015),「基於免疫遺傳算法的裝配順序優化」,同濟大學學報,第6期,頁944-950。
[20]蘇朝敦 (2013),品質工程-線外方法與應用,前程企業管理有限公司。
[21]Baybars. I. (1986). “A survey of exact algorithms for the simple assembly line balancing problem.”, Management Science, Vol.32, No.8, pp. 909-932.”
[22]Bryton, B. (1954). “Balancing of a continuous production line”, Northwestern University.
[23]Burnet F M. (1959). The Clonal Selection Theory of Acquired Immunity, Cambridge University Press.
[24]Choi B.-k. & Yang B.-S. (1996). “Multiobjective Optimum Design of Rotor-Bearing Systems With Dynamic Constraints Using Immune-Genetic Algorithm.”, Journal of Engineering for Gas Turbines and Power, Vol.123, pp.78-80.
[25]Chun, J. S., Jung, H. K., & Hahn, S. Y. (1998). “A study on comparison of optimization performances between immune algorithm and other heuristic algorithms.”, IEEE transactions on magnetics, Vol.34, No.5, pp.2972-2975.
[26]Dasgupta, D., & Forrest, S. (1996). “Novelty detection in time series data using ideas from immunology.”, In Proceedings of the international conference on intelligent systems, pp. 82-87.
[27]Dasgupta D. & Forrest S. (1998). Artificial Immune Systems and Their Applications., Springer.
[28]De Castro, L. N., & Von Zuben, F. J. (1999). “Artificial immune systems: Part I–basic theory and applications.”, Tech. Rep, Vol.210, No.1.
[29]Dimitriadis, S. G. (2006). “Assembly line balancing and group working: A heuristic procedure for workers’ groups operating on the same product and workstation.”, Computers & Operations Research, Vol.33, No,9, pp.2757-2774.
[30]Farmer, J. D., Packard, N. H., & Perelson, A. S. (1986). “The immune system, adaptation, and machine learning.”, Physica D: Nonlinear Phenomena, Vol.22, No.1-3, pp.187-204.
[31]Fattahi, P., Roshani, A., & Roshani, A. (2011). “A mathematical model and ant colony algorithm for multi-manned assembly line balancing problem.”, Journal of Advanced Manufacturing Technology, Vol.53, No.1, pp.363-378.
[32]Fan, S. U. N., Wenli, D. U., Rongbin, Q. I., Feng, Q. I. A. N., & ZHONG, W. (2013). “A hybrid improved genetic algorithm and its application in dynamic optimization problems of chemical processes.”, Chinese Journal of Chemical Engineering, Vol.21, No.2, pp.144-154.
[33]Hajela, P., Yoo, J., & Lee, J. (1997). “GA based simulation of immune networks applications in structural optimization.”, Engineering Optimization, Vol.29, No.1-4, pp.131-149.
[34]Hong, S. K., Kim, M. K., Jung, H. K., & Chun, J. S. (1997). “Shape optimization of electromagnetic devices using immune algorithm.”, IEEE transactions on magnetics, Vol.33, No.2, pp.1876-1879.
[35]Hunt, J., Cooke, D., & Holstein, H. (1995). “Case memory and retrieval based on the immune system.”, Case-Based Reasoning Research and Development, pp.205-216.
[36]Jerne, N. K. (1974). “Towards a network theory of the immune system.”, Annual Immunology, Vol.125, No.1-2, p.373-389.
[37]Xue, C., Dong, L., & Li, G. (2011). “An improved immune genetic algorithm for the optimization of enterprise information system based on time property.”, Journal of Software, Vol.6, No.3, pp.436-443.
[38]Mori, K., Tsukiyama, M., & Fukuda, T. (1993). “Immune algorithm with searching diversity and its application to resource allocation problem.”, IEEJ Transactions on Electronics, Vol.113, No.10, pp.872-878.
[39]Özcan, U., & Toklu, B. (2009). “Balancing of mixed-model two-sided assembly lines.”, Computers & Industrial Engineering, Vol.57, No.1, pp.217-227.
[40]Qian, X., & Fan, Q. (2011). “Solving multi-manned assembly line balancing problem by a heuristic-mixed genetic algorithm.”, Computers & Industrial Engineering, Vol.57, No.1, pp.217-227.
[41]Ramezanian, R., & Ezzatpanah, A. (2015). “Modeling and solving multi-objective mixed-model assembly line balancing and worker assignment problem.”, Computers & Industrial Engineering, Vol.87, pp.74-80.
[42]Roshani, A., A. Roshani, A. Roshani, M. Salehi and A. Esfandyari (2013). “A simulated annealing algorithm for multi-manned assembly line balancing problem.”, Journal of Manufacturing Systems, Vol.32, No.1, pp.238-247.
[43]Roshani, A. and D. Giglio (2015). “A Mathematical Programming Formulation for Cost-oriented Multi-manned Assembly Line Balancing Problem.”, IFAC-PapersOnLine , Vol.48, No.3, pp.2293-2298.
[44]Roshani, A. and D. Giglio (2015). “A simulated annealing approach formulti-manned assembly line balancing problem type II.”, IFAC-PapersOnLine, Vol.48, No.3, pp.2299-2304.
[45]Toklu, B. & Kellegöz, T. (2012). “An efficient branch and bound algorithm for assembly line balancing problems with parallel multi-manned workstations.”, Computers & Operations Research, Vol.39, No.12, pp.3344-3360.
[46]Lili, T. A. O., Xiangdong, K. O. N. G., ZHONG, W., & Feng, Q. I. A. N. (2012). “Modified self-adaptive immune genetic algorithm for optimization of combustion side reaction of p-xylene oxidation.”, Chinese Journal of Chemical Engineering, Vol.20, No.6, pp.1047-1052.
[47]Yao-Kuan, W., & Yu-Hong, L. (2014). “An Improved Immune Genetic Algorithm and Its Application in Computer-aided Landscape Design.”, Open Cybernetics & Systemics Journal, Vol.8, pp.1082-1090.
[48]Yagmahan, B. (2011). “Mixed-model assembly line balancing using a multi-objective ant colony optimization approach.”, Expert Systems with Applications, Vol.38, No.10, pp.12453-12461.
[49]Yeo Keun, K., K. Yong Ju and Y. Kim (1996). “Genetic algorithms for assembly line balancing with various objectives.”, Computers & Industrial Engineering, Vol.30, No.3, pp.397-409.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top