跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佩瑜
研究生(外文):Pei-Yu Li
論文名稱:以表面改質技術製備具疏水-疏油特性有機矽基薄膜之研究
論文名稱(外文):The Study of the Hydrophobic-Oleophobic Property of Organosilicon Film Prepared by Surface Modification
指導教授:劉代山
指導教授(外文):Day-shan Liu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:電漿增強化學氣相沉積系統粗糙度電漿蝕刻疏水特性疏水-疏油薄膜
外文關鍵詞:plasma-enhanced chemical vapor depositionroughnessplasma etchinghydrophobichydrophobic-oleophobic film
相關次數:
  • 被引用被引用:3
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用射頻磁控共濺鍍系統(RF magnetron co-sputtering system) 在矽基板上沉積不同沉積速率之銀薄膜以及在固定沉積速率下沉積不同厚度之銀薄膜,並使用快速熱退火爐在氮氣環境下1分鐘熱處理溫度500℃使其薄膜提升粗糙度,再經由電漿增強化學氣相沉積系統(Plasma-Enhanced Chemical Vapor Deposition;PECVD)沉積以四甲基矽烷為源材料製備有機矽基疏水薄膜(~100nm)。進一步探討其薄膜對水滴角之影響找尋最佳化水滴角參數,並以紫外光-可見光光譜儀(UV-Vis Spectrum)、場發射掃描式電子顯微鏡(FE-SEM)、原子力顯微鏡(AFM)等儀器進行量測及分析薄膜材料特性,最後再以電漿四氟化碳(CF4)乾式蝕刻方式對表面進行改質,來提升表面疏油之效果,以達到同時具備疏水-疏油薄膜之特性,能抗油汙、自清潔效果等效果。
研究結果顯示,銀薄膜熱退火前沉積於矽基板上之表面形貌為顆粒狀結構,退火後因銀的團聚特性,表面形成奈米銀粒子使其增加粗糙度。隨著銀薄膜的厚度增加,奈米銀粒子的大小也會隨之增加。有機矽基疏水薄膜其水滴接觸角約100°,當有奈米銀粒子之粗糙結構沉積有機矽基薄膜後,其最大水滴接觸角可達128°,但以上兩者皆為親油特性。根據Wenzel’s equation 表面粗糙度對疏水特性是有所影響的,但研究結果發現並不是粗糙值越大,疏水效果就一定越好。最佳化銀/有機矽基薄膜經電漿四氟化碳(CF4)乾式蝕刻後,因表面被氟化而改變了原有的表面特性,使薄膜對油滴具有排斥效果,最佳油滴接觸角約61°,且經表面氟化後對水滴的疏水效果又更優化,使其最佳水滴接觸角約138°。
In this study, the silver films have been prepared on Si substrates by different deposition rate and thickness. Both of them have used of high-temperature furnace for subsequent heat treatment at 500℃ in nitrogen ambient, and then deposition of Organosilicon film on them. In order to achieve the hydrophobic-oleophobic property. Finally, the bilayer films have used plasma (CF4) etching treatment on surface.
The nanoparticle size of the silver films after annealing is larger by thickening, and the roughness is getting rough. The single Organosilicon film compared to bilayer films, and the water contact angle is higher than single Organosilicon film that the best angle is 128°.The hexadecane contact angle both of them are Non-oleophobic property. But not the best rough will have the best hydrophobic property. According to the literature can be found that the height is as important as the roughness. The surface of bilayer films found fluorination after the plasma (CF4) etching treatment. Fluorination changes the surface properties so that the film has an oleophobic effect on the hexadecane solution, and the best hexadecane contact angle and water contact angle are 61° and 138°.
摘要---------------------------------------------------i
Abstract----------------------------------------------ii
誌謝--------------------------------------------------iii
目錄--------------------------------------------------iv
表目錄------------------------------------------------vi
圖目錄------------------------------------------------vii
第一章 緒論---------------------------------------------1
1.1前言-------------------------------------------------1
1.2 文獻回顧--------------------------------------------1
1.3 研究動機--------------------------------------------2
第二章 理論基礎------------------------------------------5
2.1電漿成分及原理----------------------------------------5
2.2化學氣相沉積薄膜之成長機制-----------------------------6
2.3化學氣相沉積法之種類----------------------------------6
2.4薄膜成長原理------------------------------------------7
2.5射頻磁控濺鍍原理--------------------------------------8
2.6濕潤性原理-------------------------------------------8
第三章 實驗方法及步驟------------------------------------15
3.1實驗流程---------------------------------------------15
3.2實驗系統---------------------------------------------15
3.2.1電漿增強化學氣相沉積系統----------------------------15
3.2.2共濺鍍系統-----------------------------------------16
3.2.3熱退火系統-----------------------------------------17
3.3薄膜量測分析-----------------------------------------17
3.3.1原子力顯微鏡(Atomic force microscope;AFM)---------17
3.3.2場發射掃描式電子顯微鏡(Field Emission-Scanning Electron Microscope;FE-SEM)--------------------------17
3.3.3 α-step表面輪廓儀----------------------------------18
3.3.4 紫外光-可見光光譜儀(UV-Vis Spectrum)-------------18
3.3.5 傅立葉轉換紅外線吸收光光譜儀(Fourier transform infrared spectroscopy;FTIR)---------------------------18
3.3.6 X光光電子能譜儀 ( X-ray Photoelectron Spectroscopy;XPS )--------------------------------------------------18
3.3.7 接觸角量測儀--------------------------------------19
第四章 結果與討論---------------------------------------25
4.1銀薄膜製作與特性分析----------------------------------25
4.1.1不同沉積速率之的銀薄膜熱退火後的奈米銀粒子特性分析----25
4.1.2不同沉積時間之銀薄膜熱退火後的奈米銀粒子特性分析------26
4.2有機矽基薄膜沉積於奈米銀粒子薄膜表面之製作與特性分析-----28
4.2.1有機矽基薄膜沉積於不同沉積速率奈米銀粒子薄膜表面之製作與分析---------------------------------------------------28
4.2.2 有機矽基薄膜沉積於不同沉積時間奈米銀粒子薄膜表面之製作與分析---------------------------------------------------30
4.3表面改質銀/有機矽基薄膜結構製作與特性分析--------------32
4.3.1表面氟化改質銀/有機矽基薄膜疏水-疏油表面特性分析------32
4.3.2表面氟化改質銀/有機矽基薄膜疏水-疏油材料特性分析------33
第五章 結論與未來工作------------------------------------63
參考文獻------------------------------------------------66
Extended Abstract--------------------------------------70
簡歷(CV)-----------------------------------------------75
[1]W. Barthlott, C. Neinhuis, 1997,“Purity of the sacred lotus, or escape from contamination in biological surfaces.”, Planta, 202, 1.
[2]Xuefeng Gao and Lei Jiang, 2005, “Bioinspired Surfaces with Special Wettability.”, Acc. Chem. Res. 38, 644-652.
[3]Kerstin Koch, Bharat Bhushan, Wilhelm Barthlott, 2009, “Multifunctional surface structures of plants: An inspiration for biomimetics”, Progress in Materials Science, 54, 137-178.
[4]N. J. Shirtcliffe, G. McHale, M. I. Newton, and C. C. Perry, 2003, “Intrinsically Superhydrophobic Organosilica Sol-Gel Foams”, Langmuir, 19, 5626-5631.
[5]Didem Ӧner and Thomas J. McCarthy, 2000, “Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability”, Langmuir, 16, 7777-7782.
[6]R. Blossey, 2003, “Self-cleaning surfaces — virtual realities”, nature materials, 2, 301.
[7]S. Shibuichi, T. Yamamoto, T. Onda,† and K. Tsujii, 1998, “Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure”, Journal of Colloid and Interface Science, 208, 287-294.
[8]陳建智, 2016“利用緩衝層結構改善薄膜沉積於壓克力基板附著度之研究”, 國立虎尾科技大學碩士論文.
[9]Linda Y.L. Wu, S.K. Ngian, Z. Chen, D.T.T. Xuan, 2011, “Quantitative test method for evaluation of anti-fingerprint property of coated surfaces”, Applied Surface Science, 257, 2965-2969.
[10]Linting Yin, Jin Yang, Yongcai Tang, Lin Chen, Can Liu, Hua Tang, Changsheng Li, 2014, “Mechanical durability of superhydrophobic and oleophobic copper meshes.”, Applied Surface Science, 316, 259-263.
[11]Shuang Cai, Qinglan Xue, Bibo Xia, Jie Yang, Hai-bing Lv, Hong-wei Yan, Bo Jiang, 2015, “Hydrophobic–oleophobic antireflective film with excellent optical property prepared by a imple sol–gel route.”, Materials Letters, 156, 14-16.
[12]C. Elif Cansoya, H. Yildirim Erbil, Orhan Akar, Tayfun Akin, 2011, “Effect of pattern size and geometry on the use of Cassie–Baxter equation for superhydrophobic surfaces.”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 386, 116-124.
[13]Thi Phuong Nhung Nguyen, Renaud Dufour, Vincent Thomy, Vincent Senez, Rabah Boukherroub, Yannick Coffinier, 2014, “Fabrication of superhydrophobic and highly oleophobic silicon-based surfaces via electroless etching method.”, Applied Surface Science, 295, 38-43.
[14]Hong Xiao 著.羅正忠 張鼎張 譯,2001, ”半導體製程技術導論 二版”, 歐 亞書局, pp.224~228 .
[15]Michael Quirk、Julian Serda 著,2005,羅文雄、蔡榮輝、鄭岫盈譯,“半導體製造技術”,滄海書局,chap 11,8月。
[16]Sematech., 1994, “Deposition Processes in Furnace Processes and Related Topics ”, Austin, TX : SEMATECH, 6.
[17]L. Eckertova, and T. Ruzicka., 1993, “Diagnostics and Applications of Thin Films”, Institute of Physics Publishing., chap. 1 & 2.
[18]J. R. Roth, 1995, “Industrial Plasma Engineering, Volume 1: Principles”, Institute of Physics Publishing Bristol and Philadelphia.
[19]Wei-Feng Xu, Chun-Chieh Chin, Ding-Wei Hung, Pei-Kuen Wei, 2013, “Transparent electrode for organic solar cells using multilayer structures with nanoporous silver film.”, Solar Energy Materials & Solar Cells, 118, 81-89.
[20]徐國材、張立德、張勁燕, 2004, “奈米複合材料”, 五南圖書出版公司
[21]R. S. Sennett and G. D. Scott, 1950, “The Structure of Evaporated Metal Films and Their Optical Properties.”, Journal of the Optical Society of America, 40, 4 , 203-211.
[22]Katherine A.Willets and Richard P. Van Duyne, 2007, “Localized Surface Plasmon Resonance Spectroscopy and Sensing.”, Annu. Rev. Phys. Chem. 58, 267-297.
[23]S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, 2012, “Optimization of electroluminescence from n-ZnO/AlN/p-GaN light-emitting diodes by tailoring Ag localized surface plasmon.”, Journal of Applied Physics, 112.
[24]Gaoxue Wang,Chunhui Dong,Changjun Jiang, Guozhi Chai,Desheng Xue, 2012, “Effect of nanoparticle size on magnetic damping parameter in Co92Zr8 soft magnetic films”, Journal of Magnetism and Magnetic Materials 324, 2840-2843.
[25]Th. Uelzen, J. Műller, 2003, “Wettability enhancement by rough surfaces generated by thin film technology.”, Thin Solid Films 434, 311-315.
[26]Takuji Soeno, Kohei Inokuchi, Seimei Shiratori, 2004, “Ultra-water-repellent surface: fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films.”, Applied Surface Science, 237, 543-547.
[27]Chien-Te Hsieh, Fang-Lin Wu, Wei-Yu Chen, 2009, “Super water- and oil-repellencies from silica-based nanocoatings.”, Surface & Coatings Technology, 203, 3377-3384.
[28]陳順祺, 2016“氣體阻障層製備於具有連續沉積-蝕刻有機矽基覆蓋之圖案化表面之研究”, 國立虎尾科技大學碩士論文.
[29]Teresa Oh, 2007, “Characteristic of Organic Thin Film Depending on Carbon Content by Fourier Transform Infrared Spectra and X-ray Diffraction Pattern”, Bull. Korean Chem. Soc., 28, 9.
[30]F. Benıtez, E. Martınez, J. Esteve, 2000,“Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification”, Thin Solid Films, 377-378, 109-114.
[31]Fumio Shimura, 1988, “Semiconductor Silicon Crystal Technology”, Academic Press.
[32]G.S. Kang, H. J. Ko, C. K. Choi, 2003,“Chemical Bond Structure of a-C:F Films with a Low Dielectric Constant Deposited by Using CH4/CF4 ICPCVD”, J. Korean Phys. Soc., Vol. 42, No. 5, pp. 676-681.
[33]Gang Chen, Junyan Zhang a, Shengrong Yang, 2008, “Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route.”, Electrochemistry Communications , 10, 7-11.
[34]E. Yasuda, et al., 2003, “Carbon Alloys, 1st Edition:Novel Concepts to Develop Carbon Science and Technology”, Gulf Professional Publishing.
[35]D.S. Liu, C.Y. Wu, 2010, “Adhesion enhancement of hard coatings deposited on flexible plastic substrates using an interfacial buffer layer”, J. Phys. D: Appl. Phys, 43, 175301.
[36]C. Wang, P.C. Lai, S. H. Syu, J. Leu, 2011, “Effects of CF4 plasma treatment on the moisture uptake, diffusion, and WVTR of poly(ethylene terephthalate) flexible films”, Surf. Coat. Tech., 206, 318-324.
[37]Chien-Te Hsieha, Jin-Ming Chena, Rong-Rong Kuoa, Ta-Sen Linb, Chu-Fu Wuc, 2005, “Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles.”, Applied Surface Science, 240, 318-326.
[38]Bernd O. Kolbesen, 1995, “Analytical Techniques for Semiconductor Materials and Process Characterization II”, The Electrochemical Society.

[39]Kei Murakoshi1, K. Uosaki, 1993, “X‐ray photoelectron spectroscopic studies of the chemical nature of as‐prepared and NaOH‐treated porous silicon layer”, Appl. Phys. Lett. 62, 1676.
[40]Yaling Su, Xingwang Zhang, Minghua Zhou, Song Han, Lecheng Lei, 2008, “Preparation of high efficient photoelectrode of N–F codoped TiO2 nanotubes”, Journal of Photochemistry and Photobiology A: Chemistry, 194, 152-160.
[41]Gregor Jakša, 2014,“AFM and XPS Study of Aminosilanes on Si”, Imaging & Microscopy”, Germany.
[42]R.V. Lakshmi, T. Bharathidasan, Parthasarathi Bera, Bharathibai J. Basu, 2012, “Fabrication of superhydrophobic and oleophobic sol–gel nanocomposite coating.”, Surface & Coatings Technology, 206, 3888-3894.
[43]Xu Liu, Zhongqing Liu, Shixiong Hao, Wei Chu, 2012, “Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition”, Materials Letters, 80, 66-68.
[44]Jianqi Maa, Xiaohua Guo, Yanyan Zhang, Hongguang Ge, 2014, “Catalytic performance of TiO2@Ag composites prepared by modified photodeposition method.”, Chemical Engineering Journal, 258, 247-253.
[45]吳東權等,2005,“微機電系統之技術現況與發展”,工業技術研究院機械工業研究所。
[46]莊達人, 2000, “VLSI 製造技術”, 高立圖書有限公司, chap. 5
[47]Thomas Young 1805, “An Essay on the Cohesion of Fluids”, Phil. Trans. R. Soc. Lond, 95, 65-87.
[48]Robert N. Wenzel 1936, “Rsistance of Solid Surfaces to Wetting by Water”, Ind. Eng. Chem, 28 (8), 988–994
[49]A. B. D. Cassie and S. Baxter 1944, “Wettability of Porous Surfaces”, Transactions of the Faraday Society, 40, 546-551.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊