跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王龍乾
研究生(外文):Long-Cian Wang
論文名稱:以影像處理技術檢測水果甜度
論文名稱(外文):Fruit Sweetness Detected by Image Processing
指導教授:莊賦祥莊賦祥引用關係
指導教授(外文):Fuh-Shyang Juang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電工程系光電與材料科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:59
中文關鍵詞:甜度檢測樹莓派紅外線攝影機影像處理
外文關鍵詞:sweetness detectionRaspberry Piinfrared cameraimage processes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以960nm紅外線穿透果糖溶液,並使用紅外線攝影機擷取穿透影像,再使用樹莓派(Raspberry Pi)中的Qt Creator及OpenCV函式庫進行影像處理提取RGB值,比較不同果糖濃度的吸收程度。
鑒於相關研究資料,果糖溶液與水在紅外線960nm波段吸收光譜有明顯差異,純水吸收率高於果糖,因此本研究利用紅外線攝影機拍攝果糖溶液之紅外線穿透影像,以5%為間隔製作5%~50%各個濃度的果糖溶液,再測量其紅外線穿透影像之RGB值。發現果糖濃度提升,960nm紅外線穿透率提高,所測得之(R, G, B)數值由(123, 104, 167)提高至(158, 133, 203)。
In this study, 960nm infrared penetration of fructose solution, and the use of infrared camera to capture the penetration of images, and then use Raspberry Pi Qt Creator and OpenCV library to do their image processing and extract RGB values, compare the absorption of different fructose concentration.
In view of the relevant research data, fructose solution in the near-infrared 960nm band absorption spectrum is significantly different, pure water absorption rate is higher than fructose, so this study using infrared camera fog sugar solution of infrared penetration image, 5% interval 5% 50% of the concentration of fructose solution, and then measure the infrared value of the infrared penetration of images, found that fructose concentration increased, 960nm infrared penetration increased, the measured RGB values from (123,104,167) increased to (158, 133,203).
摘要........................................................i
Abstract...................................................ii
誌謝......................................................iii
目錄.......................................................iv
表目錄.....................................................vi
圖目錄....................................................vii
第一章 緒論.................................................1
1.1 甜度檢測簡介............................................1
1.2 樹莓派介紹..............................................2
1.2.1 Raspberry Pi 詳細規格.................................3
1.3 Raspberry Pi環境建置....................................4
1.3.1 Raspberry Pi作業系統安裝..............................4
1.3.2 Qt Creator安裝........................................5
1.3.3 環境變數設定..........................................6
1.3.4 OpenCV函式庫設定......................................9
第二章 文獻探討............................................10
2.1 農業檢測及紅外線檢測相關文獻回顧.......................10
2.2 糖類的紅外線穿透光譜...................................11
2.2.1 960nm波段糖與水的吸收差異............................12
第三章 實驗方法與步驟......................................13
3.1 紅外線甜度檢測實驗流程圖...............................13
3.2 檢測設備及程式.........................................14
3.2.1 IR LED光源...........................................14
3.2.2 NoIR Camera 加工.....................................15
3.3 實驗架構...............................................17
3.3.1 果糖穿透實驗環境.....................................17
3.3.2 果糖溶液調配.........................................18
3.3.3 檢測介面.............................................19
3.3.4 水果反射實驗環境.....................................20
第四章 結果與討論..........................................21
4.1 不同濃度的果糖溶液之紅外線穿透RGB值....................21
4.2 西瓜原汁以IR LED照射各角度反射RGB值之強度..............29
4.3 果糖反射檢測...........................................34
4.4 紅色西瓜與黃色西瓜RGB值之差異..........................40
4.4.1 紅肉西瓜檢測.........................................40
4.4.2 黃肉西瓜檢測.........................................45
4.5 鹽水紅外線吸收測試.....................................50
第五章 結論................................................53
參考文獻...................................................54
Extended Abstract..........................................56
簡歷.......................................................59
[1]http://www.twwiki.com/wiki/%E6%8A%98%E5%85%89%E5%84%80
[2]http://goods.ruten.com.tw/item/show?21537636253137
[3]李汪盛”桃園區農業改良場研究彙報79:59-72”, 2016
[4]https://zh.wikipedia.org/wiki/%E6%A0%91%E8%8E%93%E6%B4%BE
[5]MIRTA GOLIC, KERRY WALSH, and PETER LAWSON.” Short-Wavelength Near-Infrared Spectra of Sucrose,Glucose, and Fructose with Respect to Sugar Concentration and Temperature” Plant Sciences Group, Central Queensland University, Rockhampton, 4702, Australia
[6]http://www.datasheetlib.com/datasheet/969518/eld-960-525_roithner-lasertechnik.html
[7]https://www.raspberrypi.org/learning/infrared-bird-box/worksheet/
[8]Supakorn Harnsoongnoen , Anuwat Wanthong.” Real-time monitoring of sucrose, sorbitol, D-glucose and D-fructose concentration by electromagnetic sensing” Food Chemistry 232, pp566–570, 2017
[9]Shyam Narayan Jha, Pranita Jaiswal, K. Narsaiah, Mansha Gupta, Rishi Bhardwaj, Ashish Kumar Singh” Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy” Scientia Horticulturae 138, pp 171-175, 2012
[10]João Rodrigo Santos a, Olga Viegas b,c, Ricardo N.M.J. Páscoa d, Isabel M.P.L.V.O. Ferreira b, António O.S.S. Rangel a, João Almeida Lopes.” In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour” Food Chemistry 208, pp 103-110, 2016
[11]Shuifang Li , Xin Zhang , Yang Shan , Donglin Su , Qiang Ma, Ruizhi Wen, Jiaojuan Li.” Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy” Food Chemistry 218, pp 231-236, 2017
[12]Meijun Sun, Dong Zhang, Li Liu, Zheng Wang.” How to predict the sugariness and hardness of melons: A near-infrared hyperspectral imaging method” Food Chemistry 218, pp 413-421, 2017
[13]Bart M. Nicolaı, Katrien Beullens, Els Bobelyn, Ann Peirs, Wouter Saeys, Karen I. Theron, Jeroen Lammertyn.” Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review” Postharvest Biology and Technology 46, pp 99-118, 2007
[14]S.N. Jha; S. Chopra; A.R.P. Kingsly.” Determination of Sweetness of Intact Mango using Visual Spectral Analysis” Biosystems Engineering, pp 157-161, 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊