跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭建良
研究生(外文):Jian-Liang Xiao
論文名稱:基於PLC與PC-based軸控之雙相機系統自動化排列機開發
論文名稱(外文):The Development of an Automatic Dual Camera Recognizing and Sorting System Bases on the PLC and PC-based Motion Control
指導教授:陳俊仁陳俊仁引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:自動化工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:機器視覺雙相機自動排列影像辨識PLC與PC-based差異
外文關鍵詞:Machine visiondual camerasautomatic sortingimage resolutionPLC and PC-based difference
相關次數:
  • 被引用被引用:2
  • 點閱點閱:390
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
機器視覺檢測系統通常只使用一組工業攝影機,但如果檢測的樣品同時具備數量大、體積小、多種形狀和顏色的條件,則單一組工業攝影機所能夠拍攝的影像範圍和解析度是有限的。本研究提出一雙相機視覺檢測系統,架設兩組影像解析度都為0.162 mm的工業攝影機,分別拍攝一個面積為27.5×37 cm2檢測盤面的兩個區塊,檢測的樣品為4種形狀、6種顏色,總共24種面積都不大於1 cm2的壓克力,再搭配自行開發的自動化排列機,吸取樣品後進行樣品排列。
本研究依據24種樣品不同的顏色、形狀及灰階值,使用影像學習建立資影像資料庫,並在第一次啟動人機介面時執行,執行時間約為22.434秒。影像辨識則根據影像資料庫,將檢測的樣品定義為與數值最相近的種類,一個樣品的辨識時間約為0.024秒。龍門自動化排列機之X、Y軸的作動元件為導螺桿,Z軸為氣壓缸,A軸則為步進馬達。樣品的抓取是利用真空吸取辨識後的樣品,旋轉A軸以改變其放置角,再移動到指定位置。另外,本研究亦分別使用PLC與PC軸卡控制機台,比較兩者對排列速度的影響,結果PLC的平均單顆速度約為1.737秒,PC-based約為1.853秒。
Machine vision inspection system is only taken an industrial camera typically. But if the inspected samples are accompanied by a large quantity, a small size, a variety of shapes and colors. The scope and resolution of the image is limited when using only one industrial camera. This paper developed a dual cameras inspection system, set up two industrial cameras and image resolutions are 0.162 mm. They shoot two parts of the inspection board with an area size of 27.5×37 cm2. The samples to be inspected have four shapes and six colors, the thickness is 1 mm and the area is no more than 1 cm2 of acrylic. Using the self-developed gantry automatic sorting machine to suck up the samples and sort them.
In this study, the image learning is based on twenty-four samples of colors, shapes and grayscale values to establish the database, and performs that when the HMI starts for the first time. The image learning takes about 22.434 sec. The image recognition is based on the image of the database, and the detection of the sample is defined as the most similar with the type of value. The image recognition takes of a sample is about 0.024 sec. The gantry automation sorting machine of the X, Y-axis actuating element is the lead screw, the Z-axis is the pneumatic cylinder, and the A-axis is the stepping motor. The machine uses a vacuum to suck up the recognized sample, rotate the A-axis to change its placement angle and move to the specified position. In addition, this study also using the PLC and PC axis card control the machine to compare the sorting speed. The research shows that average single time of the PLC and PC-based are respectively 1.737 sec and 1.853 sec.
摘要......i
Abstract....ii
誌謝....iii
目錄.........iv
表目錄........vii
圖目錄.........ix
符號說明.........xiv
第一章 緒論.....1
1.1 前言......1
1.2 研究目的.......2
1.3 國內外相關研究....3
1.4 論文架構............9
第二章 系統介紹..........10
2.1 系統架構............10
2.2 機台架構...............12
2.3 設備元件介紹................14
2.3.1 台達PCI-DMC-F01運動控制軸卡....17
2.3.2 DMCNET 32 通道數位輸入輸出模組...18
2.3.3 台達 ASD-DMC-RM04PI..........19
2.3.4 台達DVP-10PM..................21
2.3.5 伺服馬達與伺服馬達驅動器......22
2.3.6 步進馬達與驅動器......25
2.3.7 氣壓調節器............26
2.3.8 氣壓電磁閥與真空產生器...27
2.3.9 光遮斷器與磁簧開關......27
2.4 視覺設備與架構.........28
第三章 軟體設定與機器視覺演算.....34
3.1 馬達驅動器設定......34
3.2 軸卡DMCNET通訊設定......36
3.3 PLC MODBUS通訊設定......36
3.3.1 設備連結..............36
3.3.2 MODBUS ASCII通訊.....38
3.4 影像處理與機台校正........39
3.4.1 校正流程.......39
3.4.2 Pixel size轉換...43
3.4.3 機台與視覺校正....46
3.4.4 影像學習......48
3.4.5 重疊區處理......53
3.4.6 旋轉角度....55
3.5 人機介面....56
3.5.1 主頁面......56
3.5.2 監控頁面....61
3.5.3 校正頁面.....63
第四章 動作流程及結果....67
4.1 動作流程......67
4.2 結果.........71
4.3 不確定因素分析....79
第五章 結論與未來展望.....81
5.1 結論..........81
5.2 未來展望.....83
參考文獻.............84
Extended Abstract...........87
簡歷................92
[1]Pu Huang, Zhangjing Yang, Caikou Chen, 2015, “Fuzzy local discriminant embedding for image feature extraction”, Computers and Electrical Engineering, 46, pp.231-240.
[2]Emilia López-Iñesta, Francisco Grimaldo, Miguel Arevalillo-Herráez, 2016, “Combining feature extraction and expansion to improve classification based similarity learning”, Pattern Recognition Letters, 000, pp. 1-9.
[3]Chandra Sekhar Nandi, Bipan Tudu, Chiranjib Koley, 2014, “A Machine Vision-Based Maturity Prediction System for Sorting of Harvested Mangoes”, IEEE Transactions on Instrumentation and Measurement, 63(7), pp. 1722-1730.
[4]V. Pavithra, R. Pounroja, B. Sathya Bama, 2015, “Machine Vision Based Automatic Sorting of Cherry Tomatoes”, 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 271-275.
[5]Sofu, M. M., O. Erb, M. C. Kayacan, B. Cetişli, 2012, “Design of an automatic apple sorting system using machine vision”, Computers and Electronics in Agriculture, 127, pp. 395-405.
[6]Jyoti Jhawar, 2016, “Orange Sorting by Applying Pattern Recognition on Colour Image”, Procedia Computer Science, 78, pp. 691-697.
[7]陳奕安,2014,“以機械視覺結合自適應類神經模糊系統應用於草莓成熟度與果柄位置之辨識”,國立宜蘭大學生物機電工程學系碩士論文。
[8]Mohd Zin Zalhan, Sameon Sera Syarmila, Ismail Mohd Nazri, Ismail Mohd Taha, 2016, ” Vision-based egg grade classifier”, 2016 International Conference on Information and Communication Technology (ICICTM), pp. 31-35.
[9]Kuo-Yi Huang, 2012, “Detection and classification of areca nuts with machine vision”, Computers and Mathematics with Applications, 64, pp. 739-746.
[10]Shrestha, B.L., Y.M. Kang, O.D. Baik, 2016. “A two-camera machine vision in predicting alpha-amylase activity in wheat”, Journal of Cereal Science, 71. pp. 28-36.
[11]Mehrdad Baigvand, Ahmad Banakar, Saeed Minaei, Jalal Khodaei, Nasser Behroozi-Khazaei, 2015, “Machine vision system for grading of dried figs”, Computers and Electronics in Agriculture, 117, pp. 159-165.
[12]Anderson Rocha, Daniel C. Hauaggeb, Jacques Wainera, Siome Goldensteina, 2010, “Automatic fruit and vegetable classification from images”, Computers and Electronics in Agriculture, 70, pp. 96-104.
[13]林?億,2013,“全彩機器視覺於咖啡生豆檢測之研究”,國立雲林科技大學電子與光電工程研究所微電子與光電工程組碩士論文。
[14]陳冠霖,2010,“機器視覺應用於蜜蜂幼蟲的辨識研究”,國立嘉義大學生物機電工程學系碩士論文。
[15]鄭辰男,2013,“應用機械視覺魚不良藥錠之自動辨識系統”,國立嘉義大學生物機電工程學系碩士論文。
[16]Keyur D. Joshi, Brian W. Surgenor, Vedang D. Chauhan, 2016, “Analysis of methods for the recognition of Indian coins: A challenging application of machine vision to automated inspection”, 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1-6.
[17]Yanli Yang, Changyun Miao, Xianguo Li, Xiuzhuang Mei, 2014, “On-line conveyor belts inspection based on machine vision”, Optik, 125, pp. 5803-5807.
[18]Bin Liu, Shengjin Wu, Shifang Zou, 2010, “Automatic Detection Technology of Surface Defects on Plastic Products Based on Machine Vision”, 2010 International Conference on Mechanic Automation and Control Engineering, pp. 2213-2216
[19]Chuan-Yu Chang, Hung-Chang Shie, 2016, “Application of machine learning to classify surface marker of screw”, 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), pp. 1-2.
[20]Xinghua Li, Nian Hui, Huanfeng Shen, Yunjie Fu, Liangpei Zhang, 2015, “A robust mosaicking procedure for high spatial resolution remotesensing images”, ISPRS Journal of Photogrammetry and Remote Sensing, 109, pp. 108-125.
[21]Li Li, Jian Yao, Xiaohu Lu, Jinge Tu, Jie Shan, 2016, “Optimal seamline detection for multiple image mosaicking via graph cuts”, ISPRS Journal of Photogrammetry and Remote Sensing, 113, pp. 1-16.
[22]Annis Fathimaa, R.Karthikb, V.Vaidehi, 2013, “Image stitching with combined moment invariants and sift features”, Procedia Computer Science, 19, pp. 420-427.
[23]Jun Pan, Mi Wanga, Junli Li, Shenggu Yuan, Fen Hu, 2015, “Region change rate-driven seamline determination method”, ISPRS Journal of Photogrammetry and Remote Sensing, 105, pp. 141-154.
[24]Ke Xia, Zhengxin Weng, 2016, “Workpieces sorting system based on industrial robot of machine vision”, 2016 3rd International Conference on Systems and Informatics (ICSAI), pp. 422-426.
[25]Rafiq Ahmad, Peter Plapper, 2016, “Safe and Automated Assembly Process using Vision assisted Robot Manipulator”, Procedia CIRP, 41, pp. 771-776.
[26]Phansak Nerakaea, Pichitra Uangpairojb, and Kontorn Chamniprasartb, 2016, “Using machine vision for flexible automatic assembly system”, Procedia Computer Science, 96, pp. 428-435.
[27]Sazly Anuar, Allya Badzura Baharuddin, Amirah Mohammad, 2016, “Lego Bricks Color Sorting Machine”, 2016 2nd International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR), pp. 145-148.
[28]Zhenyu Liu, Bin Zhao, Haibo Zhu, 2012, “Research of Sorting Technology based on Industrial Robot of Machine Vision”, 2012 Fifth International Symposium on Computational Intelligence and Design, 1, pp. 57-61.
[29]台達電子工業股份有限公司,PCI-DMC-F01 RM系列說明手冊
[30]台達集團官網,http://www.deltaww.com/default.aspx?hl=zh-TW
[31]厚利馬達,步進馬達TD2M說明書
[32]SMC,真空產生器ZK2系列型錄
[33]OMRON,EE-SX系列型錄
[34]MIDMA,RCE1使用手冊
[35]Halcon,HDevelop使用者手冊
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊