跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊羽
研究生(外文):Jyun-Yu Chen
論文名稱:結合實驗與數值方法研析波浪型前緣葉片應用於垂直軸風力機時之流場與氣動力特性
論文名稱(外文):Combined Experimental and Numerical Study on the Flow Structure and Aerodynamic Characteristics of the Wavy Leading-edge Blade Applied on the VAWT
指導教授:鄭仁杰鄭仁杰引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:飛機工程系航空與電子科技碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:124
中文關鍵詞:波浪型葉片流場控制空氣動力數值模擬實驗垂直軸風力發電機
外文關鍵詞:Wavy bladeFlow controlAerodynamicNumerical SimulationExperimentVAWT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
座頭鯨有極佳的追捕獵物能力,這可歸功於其具有突起狀前緣之鰭狀肢(flipper),觀察發現其鰭狀肢突起狀前緣(tubercle leading-edge)能發揮類似被動式流場控制的功能,透過流體通過非平滑翼前緣產生渦旋,有延遲氣流分離、增加失速攻角的效用。本文採用風洞實驗與數值模擬,分析三維具波浪型前緣葉片單葉片及波浪型前緣葉片三葉片垂直軸風力機在不同波高、波長及尖速比TSR的流場特性及氣動力性能。
  在波浪型前緣單葉片穩定狀態在自由流風速12m/s的靜態分析中,發現當空氣經過波浪型葉片時,波峰區會產生渦流並向後延伸,在波谷處產生的流體分離現象較平滑形葉片明顯,但在波峰處流體分離的現象較不明顯。探討靜態單葉片中波高影響中發現,當波浪型葉片之波高增加,在攻角>12°時,波浪型前緣機翼能使升力係數提高,隨著波高增加趨勢,攻角≦12°時,當波高增加其升力係數有下降的趨勢,波高越小其升力係數越接近平滑型其效果有所提升。
  探討具波浪型前緣葉片三葉片垂直軸風力機在葉片模型以NACA0012為葉片之剖面,葉片高度H為0.2m,展弦比AR=3,波浪型前緣葉片波長WL=0.5c~3c、波高A=0.05c~0.3c,來流風速V∞=6m/s,R/c=1.726,風機半徑R=0.115m,尖速比TSR=0.05~1。當波長增加時,CQ最大值也隨著增加,增益值也逐漸增加,但同時具有CQ最小值也隨之降低,由各測試案例中,在TSR=0.095、0.191、0.287、0.383、0.5、1時其最大增益值分別為20.02%、22.66%、26.05%、19.15%、16.72%、6.91%。波浪型前緣葉片三葉片風力機數值模擬在波高的改變中,隨著波高增加 CQ最大值也隨著增加,整體波浪型前緣葉片之CQ值均高於平滑型前緣葉片,但僅A=0.3c時則略低於平滑型前緣葉片。各測試案例中,在TSR=0.095、0.191、0.287、0.383、0.5、1時其最大增益值分別為23.89%、22.23%、13.52%、12.71%、12.56%、-0.29%,僅有在TSR=1時最大增益值為負增益。
  波浪型前緣葉片三葉片風力機在風洞實驗與數值模擬的結果中顯示,波長的改變中,風機功率P_W(W)隨波長與TSR增加而提升。數值模擬在TSR=0.05、0.06、0.07、0.08時其最大增益值分別為,40.05%、39.63%、24.91%、22.02%,風洞實驗在TSR=0.05、0.06、0.07、0.08時其最大增益值分別為,40.31%、44.65%、37.34%、48.88%。在波高的改變中,風機功率P_W(W)隨波高與TSR增加而提升。數值模擬在TSR=0.05、0.06、0.07、0.08時其最大增益值分別為,15.66%、18.69%、12.62%、14.65%,風洞實驗在TSR=0.05、0.06、0.07、0.08時其最大增益值分別為,9.64%、21.36%、23.95%、37.66%。數值結果較實驗的結果有較明顯高估現象,各測試案例之平均誤差為14.35%。
Humpback whales utilize extremely mobile, wing-like flipper for banking and turning. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of flipper. Theexperiment and 3-D numerical simulation are performed in this study to thoroughly investigate the flow structure and aerodynamic characteristics of 3-blade VAWT applyingthe designed wavy wing with different amplitude, wave lengthand aspect ratio, which is simulated from the tubercles flipper on humpback whales.
For the static single blade cases withV∞=12m/s, the flow separation is stronger at the wave trough than at the wave crest due to the counter-rotating vortex induced by the flow pass through the wavy leading edge. Comparing with the smooth leading edge, the lift coefficient of wavy wing is lower in low angle of attack, but is superior at higher angle of attack. The effect of the wavy wing strongly depends on the wave length and amplitude of the wavy leading edge. For higher wave length cases, the average lift is rise as amplitude isincreased. Similarly, the improvement is more obvious for lower wave length case as amplitude is decreased.
  For the three blades vertical axis wind turbine cases withV∞=6m/s, R/c=1.726, 0.05c ≦ A ≦to 0.3c, 0.5c≦ WL ≦ to 3c and tip speed ratio 0.095≦ TSR≦1,the wind turbineperformance of wavy wing is obviouslyimproved.Comparing with the smooth leading edge, the maximum average torque coefficient CQ enhancement of wavy wing with amplitude variationare20.02%, 22.66%, 26.05%, 19.15%, 16.72%, 6.91% as TSR=0.095, 0.191, 0.287, 0.383, 0.5, 1 respectively.The maximum average torque coefficient CQ enhancement of wavy wing with wave length variationare23.89%, 22.23%, 13.52%, 12.71%, 12.56%, -0.29% as TSR=0.095, 0.191, 0.287, 0.383, 0.5, 1 respectively.
The wind turbine power analysis also implemented with numerical simulation and wind tunnel measurement. Comparing with the smooth leading edge, the maximum power enhancement of wavy wing with amplitude variationare40.05%, 39.63%, 24.91%, 22.02% as TSR=0.05, 0.06, 0.07, 0.08 respectively with numericalsimulation; and the enhancements are40.31%, 44.65%, 37.34%, 48.88% as TSR=0.05, 0.06, 0.07, 0.08 respectivelywith wind tunnel measurement.
摘要......i
Abstract......iii
誌謝......v
目錄......vi
表目錄......viii
圖目錄......ix
符號說明......xvi
第一章 緒論......1
1.1 研究動機......1
1.2 研究目的......4
1.3 文獻回顧......5
第二章 分析......10
2.1 物理模式......11
2.2 幾何分析......11
2.3 統御方程式......12
2.4 紊流模型......13
2.5 邊界條件......15
2.6 參數定義......16
第三章 數值方法及驗證......17
3.1 簡述......17
3.2 滑動網格(Sliding mesh)......17
3.3 網格系統......18
3.4 程式驗證......19
第四章 實驗量測......21
4.1 風洞實驗設備......21
4.2 風洞實驗步驟......23
4.2.1 靜態單葉片風洞實驗......23
4.2.2 動態三葉片風機風洞實驗......40
第五章 結果與討論......41
5.1 靜態單葉片分析......41
5.1.1 靜態單葉片數值模擬流場分析......41
5.1.2 靜態單葉片風洞實驗流場分析......26
5.1.3 靜態單葉片風洞實驗與數值模擬結果比較......28
5.2 單葉片風力機數值模擬分析......29
5.2.1 單葉片風力機葉片數值模擬厚度之影響......29
5.3 三葉片風力機分析......30
5.3.1 三葉片風力機葉片數值模擬波長之影響......30
5.3.2 三葉片風力機葉片數值模擬波高之影響......32
5.3.3 三葉片風力機風洞實驗與數值模擬結果比較......50
第六章 結論......36
6.1 靜態單葉片......36
6.2 單葉片風力機......37
6.3 三葉片風力機......37
參考文獻......93
Extend Abstract......97
[1]F. E. Fish, P. W. Weber, M. M. Murray and L. E. Howle, "The tubercles on Humpback Whales’ Flippers: Application of Bio-Inspired Technology", Integrative and Comparative Biology, Vol. 51, No.1 pp.203-213, 2011
[2]Ahmed Farouk Abdel Gawad, "Utilization of Whale-Inspired Tubercles as a Control Technique to Improve Airfoil Performance ",transaction on control and mechanical systems, Vol. 2, No. 5, pp. 212-218, May, 2013.
[3]S.M.A. Aftab , N.A. Razak , A.S. Mohd Rafie , K.A. Ahmad , "Mimicking the humpback whale: An aerodynamic perspective", Progress in Aerospace Sciences, Vol. 84, July 2016, Pages 48–69.
[4]Majid Asli, Behnam Mashhadi Gholamali, and Abolghasem Mesgarpour Tousi, "Numerical Analysis of Wind Turbine Airfoil Aerodynamic Performance with Leading-edge Bump", Vol. 2015, Article ID 493253, 8 pages
[5]P. Watts and F. E. Fish "The Influence of Passive, Leading-edge Tubercles on Wing Performance", Proceeding of Unmanned Untethered Submersible Technology (UUST), UUST01, Autonomous Undersea System Institute, Durham, New Hampshire, August, 2001.
[6]D. S. Miklosovic, M. M. Murray, L. E. Howle, and F. E. Fish, "Leading-Edge Tubercles Delay Stall on Humpback Whale (Megaptera novaeangliae) Flipper", Physics of Fluids, Vol. 16, No.5, pp.39-42, 2004
[7]H.S. Yoon , P.A. Hung , J.H. Jung , M.C. Kim, "Effect of the wavy leading-edge on hydrodynamic characteristics for flow around low aspect ratio wing", Computers & Fluids, Vol. 49, Issue1, October 2011, Pages 276-289

[8]Z. Čarija1 , E. Marušić , Z. Novak, S. Fućak, "Numerical analysis of aerodynamiccharacteristicsof a bumped leading-edge turbine blade", Engineering Review Vol. 34, Issue 2, 93-101, 2014.
[9]J. Favier, A. Pinelli, U. Piomelli, "Control of the separated flow around an airfoil using a wavy leading-edge inspired by humpback whale flippers", comptes Rendus Mecanique, 340,pp.107-114, 2012.
[10]JingWang, Chengchun Zhang, ZhengyangWu, JamesWharton , LuquanRen , "Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures", Journal of Sound and Vibration 394(2017)46–58
[11]Y.-yun Wang, W.-rong Hu, S-dong Zhang, "Performance of the bio-inspired leading-edge protuberances on a static wing and a pitching wing", Journal of Hydrodynamics, Vol.26 pp. 912-920 2014.
[12]Weichao Shi , Mehmet Atlar, Rosemary Norman, Batuhan Aktas, Serkan Turkmen, " Numerical optimization and experimental validation for a tidal turbine blade with leading-edge tubercles", Renewable EnergyVol.96, Part A, October 2016, Pages 42–55
[13]San-Yih Lin, Yang-You Lin, Chi-Jeng Bai, Wei-Cheng Wang, "Performance analysis of vertical-axis-wind-turbine blade with modified trailing edge through computational fluid dynamics", Renewable EnergyVol .99, December 2016, Pages 654–662
[14]Hamid Johari, John J. Blandino, David J. Olinger, Charles W. Henoch , Mark W. Richman, "The Effect of Humpback Whale-like Leading-edge Protuberances on Hydrofoil Performance",Mechanical Engineering, December 2007
[15]Zhaoyu Wei, B. Zang, T.H. New, Y.D. Cui, "A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles", Ocean Engineering, Vol .121, 15 July 2016, Pages 356-368

[16]I. Ibrahim, T. New, "A numerical study on the effects of leading-edge modifications upon propeller flow characteristics", Proceedings of Ninth International Symposium on Turbulence and Shear Flow Phenomena (TSFP-9), 2015, pp. 1–6.
[17]Weichao Shi, Roslynna Rosli , Mehmet Atlar , Rosemary Norman , Dazheng Wang , Wenxian Yang, "Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles", Ocean Engineering,Vol.117, 1 May 2016, Pages 246–253
[18]Zhaoyu Wei, T.H.New, Y.D.Cui, " An experimental study on flow separation control of hydrofoils with leading-edge tubercles at low Reynolds number", Ocean Engineering, Vol.108, 1 November 2015, Pages 336–349

[19]1.A. Gupta, A. Alsultan, Ryo S. Amano, "Numerical and experimental performance analysis of wind turbine blades", Proceedings of 11th International Energy Conversion Engineering Conference, San Jose, CA, vol. 3675, AIAA, 2013, pp. 1–12.
[20]2.Guo-Yuan Huang, Y.C. Shiah, Chi-Jeng Bai, W.T. Chong, "Experimental study of the protuberance effect on the blade performance of a small horizontal axis wind turbine", Journal of Wind Engineering and Industrial Aerodynamics, Vol.147, December 2015, Pages 202–211

[21]ANSYS, FLUENT 13.0 User’s Guide, ANSYS Inc, 2010.
[22]F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA Journal, Vol. 32, pp. 1598-1605, 1994.
[23]J. P. Van Doormaal and G. D. Raithby, "Enhancements of the SIMPLE method for predicting incompressible fluid flows", Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
[24]S.V. Patankar, "Numerical Heat Transfer and Fluid Flow", McGraw-Hill, New York, 1980.
[25]J.H.Chen, S.S.Li, V.T.Nguyen, "The effect of leading-edge protuberances on the performance of small aspect ratio foils", 15th International Symposium on Flow Visualization June 25-28, 2012, Minsk, Belarus.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊