跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇蜇翔
研究生(外文):Che-Hsiang Su
論文名稱:以低成本製備氧化鋅奈米發電機電極之研究
論文名稱(外文):Study of Preparation ZnO Nanogenerator Electrode by Low Cost Method
指導教授:閔庭輝
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:氧化鋅奈米柱發電機水熱法
外文關鍵詞:ZnOnanorodsgenerator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅為Ⅱ-Ⅵ族化合物半導體,具有直接能隙的能帶結構,能隙的大小為3.37 eV,所對應的波長範圍在紫外光區段,並具有高達60 meV的激子束縛能。此外,由於ZnO具有高透光率以及低電阻率的特性。因此ZnO被認為是非常重要且具有未來性的光電材料。本研究以濺鍍法於ITO玻璃基板沉積氧化鋅薄膜,利用水熱法生長其一維型式的氧化鋅奈米柱結構。在物理性能的氧化鋅奈米柱的光學特性的實驗條件影響將以X射線繞射(XRD),掃描電子顯微鏡(FE-SEM),成分分析(energy-dispersive spectrometry : EDS),分析其一維型式奈米柱的品質。以ITO玻璃基板生長氧化鋅奈米柱,之後製作上電極,與前者奈米結構組裝成奈米發電機,利用超聲波驅動其奈米發電機,在氧化鋅奈米柱成長6小時得到平均電流3.46×10-6A與平均電壓5.63×10-2V,而使用蝕刻電極去增加接觸面積也得到良好的電壓-電流特性。
Zinc oxide is a II-VI semiconductor material with direct band-gap of 3.37eV corresponding to the wavelength in the ultraviolet region and it also has large exction binding energy (~60 meV). In addition, ZnO has the characteristic of low resistivity and high transparency, therefore, it is considered as a promising material for the application of the optoelectronics. In this study, ZnO film is deposited by sputter on ITO glass substrate, and ZnO nanorods nanostructure are grown by hydrothermal. One dimensional type of nanostructure was analysed physical properties of ZnO nanorods optical properties by XRD, FE-SEM, EDS. ZnO nanorods are grown on ITO glass, then fabricate naogeneratator by making top electrode. Nanogenerator are driven by ultrasonic waves. ZnO nanorods are grown 6 hours and measured its voltage and current. The average current and average voltage are 3.46×10-6A and 5.63×10-2V respectively. The use of an etching electrode to increase the contact area also results in good voltage-current characteristics.
摘要...................................i
Abstract...............................ii
誌謝...................................iii
目錄...................................iv
表目錄..................................vi
圖目錄..................................vii
第一章 緒論...........................1
1.1前言................................1
1.2研究動機............................2
第二章 文獻探討.......................3
2.1氧化鋅奈米結構介紹...................3
2.2壓電效應............................4
2.2.1壓電效應的起因.....................4
2.2.2壓電現象的分類....................4
2.2.3壓電材料–氧化鋅奈米線..............6
2.3金屬半導體接觸理論...................8
2.4薄膜沉積原理........................11
2.5反應式射頻磁控濺鍍原理...............12
2.6液相沉積法成長奈米結構...............15
第三章 實驗步驟.......................17
3.1實驗架構............................17
3.1.1實驗藥品..........................18
3.1.2實驗儀器..........................19
3.2製作奈米發電機.......................20
3.2.1清洗基板..........................20
3.2.2氧化鋅薄膜製作.....................20
3.2.3奈米柱實驗反應流程..................21
3.2.4製作蝕刻電極.......................22
3.2.5組裝氧化鋅奈米發電..................23
3.3氧化鋅分析...........................25
3.3.1場發射電子顯微鏡(FE-SEM, JEOL JSM-6700F............25
3.3.2成份分析(Energy-Dispersive Spectrometry, EDS)......25
3.3.3X光繞射儀(X-Ray Diffractometer, XRD)............25
第四章 實驗結果與討論..........................27
4.1氧化鋅薄膜與氧化鋅奈米柱材料分析...........27
4.2氧化鋅奈米柱的表面結構與光學分析...............28
4.2.1場發射電子顯微鏡表面結構分析................28
4.2.1.1不同時間生長氧化鋅奈米柱.....................28
4.2.2X光繞射結構分析(XRD)............................34
4.2.3能量分散光譜分析(EDS).........................35
4.3製備壓電式奈米發電機與電流–電壓量測.............36
4.3.1氧化鋅晶種層製作奈米發電機之特性分析..............36
4.3.2氧化鋅奈米柱製作奈米發電機之特性分析...........36
4.3.3蝕刻電極製作奈米發電機之特性分析...............37
第五章 結論與未來展望.......................46
5.1結論....................................46
5.2未來展望…..............................46
參考文獻 ...........................................47
Extended Abstract...............................50
簡歷...........................................54
[1] K. Hiruma et al., 1995, “Growth and optical properties of nanometer-scale GaAs and InAs whiskers”, J. Appl. Phts, 77, 447.
[2] Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, 2000, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett, 76, 2011.
[3]呂婉華,2003,國立交通大學材料科學與工程學系碩士論文。
[4] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y.Segawa, 1998, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett, 72, 3270.
[5] D. C. Reynolds, D. C. Lock and B. Jogai, 1996, “Optically pumped ultraviolet lasing from ZnO”, Solid State Commun, 99, 873.
[6] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, 1997, “Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett, 70, 2230.
[7] C.Y. Lu, S. J. Chang, S. P. Chang,C. T. Lee,C. F. Kuo, and H. M. Chang. 2006, “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO: Ga/glass Templates”, Appl. Phys.Lett, 89, 153101.
[8] X. Wang, J. Song, J. Liu, Z. L. Wang, 2007, “Direct-Current Nanogenerator Driven by Ultrasonic Waves“, Science, 6, 316.
[9] J. Liu, P. Fei, J. Song,X. Wang,C. Lao,R. Tummala, and Z. L. Wang, 2008, ”Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator“, Nano Lett, 8, 328-332.
[10] Y. Qin, X. Wang, Z. L. Wang, 2008, “Nanofibres made that produce power when rubbed together”, Nature, 451, 14.
[11] 陳秀連,2002,“以化學法製備均一粒徑氧化鋅粉體與發光特性之研究?,國立台灣科技大學材料科技研究所。
[12] T. Sekiguchi, N, Ohashi, Y. Terada, 1997, “Effect of Hydrogenation on ZnO Luminescence “, Jpn. J. Phys, 36, 289.
[13] S. H. Seoa, W.C. Shinb, J. S. Parkb, 2002, “A novel method of fabricatingZnO/diamond/Simultilayers for surfaceacousticwave (SAW) deviceapplications”, Thin Solid Films, 416, 190–196.
[14] S. A. Studenikin, N. Golego, and M. Cociver, 1998, “Fabrication of green andorange photoluminescent, undoped ZnO films using spray pyrolysis”, J. Appl. Phys, 84, 2287.
[15] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, 2003, “A comparison ofplasma-activated N2/O2 and N2O/O2 mixtures for use in ZnO:N synthesis bychemical vapor deposition”, J, Appl. Phys, 96, 7036-7044.
[16] H.S. Randhawa, M.D. Matthews and R.F. Bunshan, 1981, "SnO2 Films Preparedby Activated Reactive Evaporation”, Thin Solid Films, 83, 267-271.
[17] F. Furusaki, J. Takahashi and K. Kodaira, 1994, "Preparation of ITO Thin Films bySol-Gel Method”, J. of the Japan Ceramic Society, 102, 200-205.
[18] E. S Shim et al., 2002, “Effect of The Variation of Films Thickness on The Structural and Optical Properties of ZnO Thin Films Deposition on Sapphire Substrate Using PLD”, Appl. Surf. Sci, 186, 474-476.
[19] Yasuhiro Igasaki and Hiromi Saito, 1991, “The Effects of Zinc Diffusion on The Electrical and Optical Properties of ZnO:Al Films Prepared by RF Reactive Sputtering”, Thin Solid Films, 199, 223-230.
[20] 吳朗,1994,“電子陶瓷-壓電?,台北市,全欣科技圖書,頁7~13。
[21] S. Deki, Y. Aoi, Y. Miyake, A. Gotoh, and A. Kajinami, 1996, “Novel wet process for preparation of vanadium oxide thin film”, Mater. Res. Bull, 31, 1399.
[22] R.S.Wangner, and W.C. Eillis, 1964, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett, 4, 89.
[23] J. Lin, P. Fei, J. Zhou, R.Tummala, and Z.L. Wang, 2008, “Toward high output-power nanogenerator”, Appl. Phys. Lett, 92, 173105.
[24] J. Lin, P. Fei, J. song, X. Wang, C.Lao, Rao Tummala, and Z.L.Wang, 2008, “Carrier density and Shottky barrier on the performance of Dc nanogenerator”, Nano Lett, 8, 328.
[25] H. Gerischer, and H. Tributsch, 1968, ”Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen”, Phys. Chem, 72, 437-445.
[26] “Semiconductor devices physics and technology 2nd edition”, S.M. Sze.
[27] “Semiconductor material and device characterization”, Dieter K. Schoder.
[28] F. A. Padovani and R. Stratton, 1996, “Filed and Thermionic-Feild Emission in Schottky Barriers”, Solid-State Electron, 9, 695-707; F. A. Padovani, 1971, “The Current-Voltage charateristics of Metal-Se iconductor Contacts”in Semiconductors and semimetals (R. K. Willardson and A. C. Beer, eds.)”, Academic Press, 7A, 75-146.
[29] M.P. Dare-Edwards, J.B. Goodenough, A. Hamnet, K.R. Seddon, and R.D. Wright., 1980, ”Sensitisation of semiconducting electrodes with ruthenium-based dyes”,Chem. Soc, 70, 285-298.
[30] H. Tsubomura, M. Matsumura, Y. Noyamura, and T. Amamiya, 1976, ”Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, 402-403.
[31] P. Wang, R. H. Baker, J. E. Moser, S. M. Zakeeruddin, M. Grätzel, 2004, “Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2''-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells”, Chemistry of Materials, 16(17), 3246-3251.
[32] F. Shinoki and A. Itoh, 1975, “Mechanism of rf reactive sputtering”, Journal of Applied Physics, 46, 3381-3384.
[33] 彭士銘,2012,“Optoelectronic Devices with One-Dimensional ZnO Nanostructures”,國立成功大學微電子所。
[34] 吳誠智,2012,“氧化鋅光電元件特性之研究”,國立虎尾科技大學光電與材料科技研究所。
[35] W. Park, II., C. H. Lee, J. H. Chae, D. H. Lee, and G. C. Yi, 2009, “Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition”, Small, 5(2), 181–184.
[36] K. Keem, D. Y. Jeong, S. Kim, M. S. Lee, I. S. Yeo, U. I. Chung, and J. T. Moon, 2006, “Fabrication and Device Characterization of Omega-Shaped-Gate ZnO Nanowire Field-Effect Transistors”, Nano Lett, 6, 1454-1458.
[37] Y. Z. Jin, J. P. Wang, B. Q. Sun, J. C. Blakesley, and N. C. Greenham, 2008, “Solution-processed ultraviolet photodetedtors based on colloidal ZnO nanoparticles”, Nano Lett, 8, 1649-1653.
[38] P. Mitra and J. Khan, 2006, “Chemical deposition of ZnO films from ammonium zincate bath”, Materials Chemistry and Physics, 98, 279-284.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊