跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:甘宗達
研究生(外文):Zong-Da Kan
論文名稱:基於電化學阻抗譜建立電池模型參數量測系統設計
論文名稱(外文):Design of the Measurement System for Building the Parameters of Battery Model with Electrochemical Impedance Spectroscopy
指導教授:劉煥彩
指導教授(外文):Van-Tsai Liu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:68
中文關鍵詞:電化學阻抗譜奈奎氏圖電池阻抗頻率掃描
外文關鍵詞:EISNyquist plotbattery Impedancesweep frequency
相關次數:
  • 被引用被引用:3
  • 點閱點閱:694
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電池所表現的各項參數為判斷電池殘電量以及壽命的重要依據,現今判斷電池殘電量使用的參數多為開路電壓、溫度或庫倫積分電流。而重要參數之一的阻抗,由於電路較為複雜,故較少採用。
本文完成一電化學阻抗譜資料取樣之系統,運用正弦波掃頻方式使電流訊號通過電池,使電池產生響應訊號並量測訊號電壓增益與相位差,由此求得內部等效電路當交流電流通過時所造成的阻抗,並將各頻率阻抗值繪製成奈奎氏圖。探討各種被動元件所組成的等效電路與其奈奎氏圖之關係,再由量測電池的奈奎氏圖分析其等效電路模型,計算模型各元件參數數值。
本文針對Randles電路做分析,Randles電路包含歐姆電阻(RΩ)、電荷轉移電阻(RCT)與雙層電容(CDL),交流訊號為1千赫茲左右時,電池的響應訊號與原始訊號相位差幾乎為零,所代表的電阻值為RΩ;交流訊號介於1千赫茲與1赫茲之間的電池響應訊號代表著RCT以及CDL並聯的數值。Randles等效電路所構成的頻率範圍約為1赫茲至1千赫茲之間,而低於1赫茲的響應訊號稱之Warburg,其在奈奎氏圖上呈現一固定斜率直線;以及高於1千赫茲的響應訊號為電感響應阻抗。
The parameters of the battery is the important basis to determine the state of charge(SOC) and state of health(SOH). Nowadays, the parameters used to determine the SOC are mostly open circuit voltage(OCV), temperature or coulomb counting method. One of the important parameters is impedance. As the circuit is more complex, so it is less used.
This thesis completes a data sampling system of the electrochemical impedance spectroscopy(EIS). Use the sweep frequency of sine wave to make the current signal through the battery. Make the bettery generate a response signal and measure the gain of voltage and the phase difference. Thus find the equivalent circuit of the impedance when the AC current through. And the impedance value at every frequency point are plotted as Nyquist Plot. Discuss the relationship between the equivalent circuit composed of various passive components and Nyquist plot. And analysis of it’s equivalent circuit model by the measurement of the Nyquist plot, then calculate every components value of the model.
This thesis analysis for the Randles circuit, it contains RΩ , charge transfer Resistance(RCT) and double layer capacitance(CDL). When the AC signal at about 1kHz, the battery’s response signal and the original signal are almost no phase difference. The resistance is RΩ. And the response signal between the 1kHz and 1Hz is the parallel value of RCT and CDL.The Randles equivalent circuit contain the frequency about 1Hz to 1kHz. And the response signal below 1Hz is Warburg. It show a fixed slope straight line on Nyquist plot, the signal above 1kHz is the impedance of inductance.
摘要……i
Abstract……ii
誌謝……iii
目錄……iv
表目錄……v
圖目錄……vi
第一章 緒論……1
1.1 研究動機與目的……1
1.2 研究方法……1
1.3 論文大綱……2
第二章 電池模型與EIS量測……3
2.1 奈奎氏圖……3
2.2 電池阻抗……4
2.3 電池模型……6
第三章 量測系統與電路設計……11
3.1 系統與電路架構……11
3.2 硬體電路設計……12
3.3 系統流程與韌體設定……27
第四章 實驗結果與分析……35
4.1 直接數位合成訊號與掃頻……35
4.2 電壓電流轉換器訊號比較……37
4.3 耦合前後對照與訊號補償……39
4.4 儀表放大器訊號分析……42
4.5 濾波器輸入前後對比……43
4.6 全波整流分析……46
4.7 峰值檢測與True-RMS比較……48
4.8 相位差數據量測……53
4.9 量測數據分析……56
第五章 結論與未來展望……61
參考文獻……62
Extended Abstract……64
簡歷(CV)……68
[1]Zechang Sun, Xuezhe Wei and Haifeng Dai, “Battery management system in the China-made ‘‘Start’’ series FCHVs”, Proceedings of IEEE international vehicle power and propulsion conference, pp. 1-6, 2008.
[2]Xu Zhang, Yujie Wang, Duo Yang and Zonghai Chen, “An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model”, Energy, Vol 115, pp. 219-229, November 2016.
[3]R. Mingant, J. Bernard and V. Sauvant-Moynot, “Novel state-of-health diagnostic method for Li-ion battery in service”, Applied Energy, vol 183, pp. 390-398, December 2016.
[4]Haifeng Dai, Xuezhe Wei, Zechang Sun, Jiayuan Wang and Weijun Gu, “Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications”, Applied Energy, Vol. 95, pp. 227-237, July 2012.
[5]D. Di Domenico, E. Prada and Y. Creff, “An Adaptive Strategy for Li-ion Battery SOC Estimation”, Preprints of the 18th IFAC World Congress Milano (Italy), pp. 9721-9726, August 2011.
[6]D. Di Domenico, Y. Creff, E. Prada, P. Duchêne, J. Bernard and V. Sauvant-Moynot, “A Review of Approaches for the Design of Li-Ion BMS Estimation Functions”, Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol.68 , pp. 127-135, 2013.
[7]Li Wang, Jishi Zhao, Xiangming He, Jian Gao, Jianjun Li, Chunrong Wan and Changyin Jiang, “Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries”, International Journal of Electrochemcal Science, Vol 7, pp. 345-353, January 2012.
[8]F.Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, Vol 70, pp. 59-69, January 1998.
[9]Texas Instruments, “Sine Wave Generation Techniques”, Texas Instruments Application Notes, AN-263, April 2013.
[10]洪嘉男、劉煥彩,“鉛酸電池交流內阻量測系統開發設計”,國立虎尾科技大學電機工程系碩士論文,2016。
[11]Tektronix, “Overview of Two-Wire and Four-Wire(Kelvin) Resistance Measurements”, Tektronix Application Notes, September 2012.
[12]Metrohm, “Electrochemical Impedance Spectroscopy (EIS) Part 1 – Basic Principles”, Metrohm Application Notes, July 2011.
[13]MIT, “Equivalent Circuit Models Lecture 6: Impedance of Electrodes”, MIT OpenCourseWare, Spring 2014.
[14]Hans-Georg Schweiger, Ossama Obeidi, Oliver Komesker, André Raschke, Michael Schiemann, Christian Zehner, Markus Gehnen, Michael Keller and Peter Birke, “Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells”, Sensors Open Access Journal, pp. 5604-5625, June 2010.
[15]Qiu-An Huang, Rob Hui, Bingwen Wang and Jiujun Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol 52, pp. 8144-8164, November 2007.
[16]Bernard A. Boukamp, “Electrochemical Impedance Spectroscopy”, Leiden University, November 2008.
[17]Metrohm, “Electrochemical Impedance Spectroscopy (EIS) Part 3 – Data Analysis”, Metrohm Application Notes, July 2011.
[18]Metrohm, “Electrochemical Impedance Spectroscopy (EIS) Part 4 – Equivalent Circuit Models”, Metrohm Application Notes, July 2011.
[19]James Wong, “A Collection of Amp Applications”, Analog Devices Application Notes, AN-106.
[20]Bruce Carter and Thomas R. Brown, “HANDBOOK OF OPERATIONAL AMPLIFIER APPLICATIONS”, Texas Instruments Application Notes, SBOA092A, October 2001.
[21]National Semiconductor, “Op Amp Circuit Collection”, National Semiconductor Application Notes, AN-31, September 2002.
[22]Ron Mancini, “Op Amps For Everyone”, Texas Instruments Design Reference, SLOD006B, August 2002.
[23]Analog Devices Wiki “Chapter 4: Op Amp applications - Advanced topics”. June 2017, from https://wiki.analog.com/university/courses/electronics/text/chapter-4
[24]Texas Instruments, “AC Coupled, Single-Supply, Inverting and Non-inverting Amplifier Reference Design”, Texas Instruments Reference Designs Library, TIPD185, March 2015.
[25]Analog Devices, “Basic Three Op Amp In-Amp Configuration”, Analog Devices University Program Online Teaching Materials, MT-063.
[26]Texas Instruments, “Analysis of the Sallen-Key Architecture”, Texas Instruments Application Report, SLOA024B, September 2002.
[27]Jim Karki, “Active Low-Pass Filter Design”, Texas Instruments Application Report, SLOA049B, September 2002.
[28]Hank Zumbahlen, “Full Wave Rectifier”, Analog Devices University Program Online Teaching Materials, MT-211, February 2013.
[29]Hank Zumbahlen, “Half Wave Rectifier”, Analog Devices University Program Online Teaching Materials, MT-212, April 2012.
[30]Dragos Ducu, “Op Amp Rectifiers, Peak Detectors and Clamps”, Microchip Application Notes, AN-1353, February 2011.
[31]Charles Kitchin and Lew Counts, “RMS to DC Conversion Application Guide 2nd Edition” Analog Devices, 1986.
[32]Bob Clarke, Mark Fazio and Dave Scott, “RMS-to-DC Converters Ease Measurement Tasks” Analog Devices Application Notes, AN-268, 2000.
[33]Eva Murphy and Colm Slattery, “All About Direct Digital Synthesis” Analog Dialogue, Vol 38, August 2004.
[34]Analog Devices, “Fundamentals of Direct Digital Synthesis (DDS)”, Analog Devices University Program Online Teaching Materials, MT-085, October 2008.
[35]Datasheet, “MAX5215/MAX5217”, Maxim Integrated, November 2012.
[36]Datasheet, “PIC24FV16KM204 FAMILY”, Microchip Technology Inc, 2013.
[37]Reference Manual, “12-Bit A/D Converter with Threshold Detect”, Microchip Technology Inc, Section 51, 2011.
[38]Reference Manual, “Capture/Compare/PWM/Timer(MCCP and SCCP)”, Microchip Technology Inc, Section 64, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top