跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊年竣
研究生(外文):Nian-Jyun Yang
論文名稱:基於影像分割實現機器人載具快速地板區域計算方法
論文名稱(外文):A New Fast Estimating Floor Region Base on Image Segmentation for Smart Rovers
指導教授:宋啟嘉
指導教授(外文):Chi-Chia Sun
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:47
中文關鍵詞:無人地面載具地板區域計算室內複雜環境ARM-FPGA異構計算
外文關鍵詞:UGVFloor Regions EstimationCluttered Indoor SurroundingsARM-FPGA Heterogeneous Computing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前大多數的地板區域偵測演算法仍然依賴著深度或一些外加的感測器,相對的需要消耗更多的計算資源並且增加無人地面載具的總重量。在本論文中,提出了一個創新的架構,讓無人地面載具能夠僅使用單張影像輸入來判斷出地板區域。由於在室內環境中有花紋地板、陰影和反光,使得區分地板區域更加困難,因此我們提出的演算法結合了從表面紋理特徵提取以及從物件邊緣或是線段中找出特定的幾何區域,透過分類器來區分出地板區域與非地板區域,並使用ARM-FPGA異構計算平台來實現硬體加速使得演算法達到即時計算的效能。在實驗結果中,我們使用public MIT Scene dataset和各種室內環境的數據集來驗證我們提出演算法的正確率,而我們提出的演算法在沒有外加任何感測器情況下,正確率平均可達到94.72%。
By far most of the floor regions detection algorithms are still dependent on the depth or other additional sensors that consume more power relatively and increase the total weigh for smart land rovers. In this paper, a new framework that enable to estimate floor regions in single image for Unmanned Ground Vehicle (UGV) robots is presented. In general case, the cluttered indoor surroundings such as patterned floors, shadows and reflections, those surroundings are very difficult to identify floor regions. The proposed algorithm combines extracting surface texture characteristic with specific geometric area is able to find out from object boundary, and through SVM to distinguish between floor and non-floor regions. In order to achieve real-time performance, the proposed algorithm has been implemented on an ARM-FPGA heterogeneous computing platform with hardware acceleration methodology. In experimental results, public MIT Scene dataset and indoor database were selected to verify the detection accuracy. The proposed algorithm accuracy can reach up to 94.72% in average without any other sensors for assistant.
摘要......i
Abstract......ii
誌謝......iii
目錄......iv
表目錄......vi
圖目錄......vii
第一章 緒論......1
1.1 研究背景與動機......1
1.2 研究目的與方法......1
1.3 文獻回顧與探討......1
第二章 地板區域偵測演算法......6
2.1 表面紋理特徵提取演算法......6
2.1.1 超像素演算法......8
2.1.2 提取超像素紋理特徵......11
2.2 圖片特定幾何區域......13
2.2.1 Canny邊緣偵測......13
2.2.2 線段交叉點偵測......16
2.2.3 物件標籤化......20
2.3 地板與非地板區域分類......24
2.4 特定表面地板區域......26
第三章 演算法實驗結果......28
第四章 嵌入式系統應用與機器人載具實現......34
4.1 嵌入式系統應用......35
4.1.1 RGB轉CIELAB硬體加速實現......36
4.1.2 LMF硬體加速實現......37
第五章 結論......39
參考文獻......40
Extended Abstract......42
簡歷(CV)......47
[1]L. Wang, Z. Zhou, J. Wu, Y. Liu, and X. Zhao, “Support-plane estimation for floor detection to understand regions’ spatial organization,” in IEEE International Conference on Robotics and Biomimetics, Dec 2014, pp. 2576–2581.
[2]M. Seki and Y. Sugaya, “Floor-wall boundary detection from projected ellipses for autonomous robot navigation,” in International Conference On Advanced Informatics: Concepts, Theory And Application, Aug 2016, pp. 1–4.
[3]C. Chun, D. Park, W. Kim, and C. Kim, “Floor detection based depth estimation from a single indoor scene,” in IEEE International Conference on Image Processing, Sept 2013, pp. 3358–3362.
[4]S. Kumar, M. S. Karthik, and K. M. Krishna, “Markov random field based small obstacle discovery over images,” in IEEE International Conference on Robotics and Automation, May 2014, pp. 494–500.
[5]Y. Li and S. T. Birchfield, “Image-based segmentation of indoor corridor floors for a mobile robot,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2010, pp. 837–843.
[6]V. Hedau, D. Hoiem, and D. Forsyth, “Recovering the spatial layout of cluttered rooms,” in IEEE International Conference on Computer Vision, Sept 2009, pp. 1849–1856.
[7]S. Aggarwal, A. M. Namboodiri, and C. V. Jawahar, “Estimating floor regions in cluttered indoor scenes from first person camera view,” in International Conference on Pattern Recognition, Aug 2014, pp. 4275–4280.
[8]Y. Boykov and V. Kolmogorov, “An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, Sept 2004.
[9]R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Sstrunk, “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, Nov 2012.
[10]D. Hoiem, A. A. Efros, and M. Hebert, “Recovering surface layout from an image,” International Journal of Computer Vision, vol. 75, no. 1, pp. 151–172, 2007.
[11]T. Leung and J. Malik, “Representing and recognizing the visual appearance of materials using three-dimensional textons,” International Journal of Computer Vision, vol. 43, no. 1, pp. 29–44, 2001.
[12]J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, Nov 1986.
[13]R. G. von Gioi, J. Jakubowicz, J. M. Morel, and G. Randall, “Lsd: A fast line segment detector with a false detection control,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 4, pp. 722–732, April 2010.
[14]A. AbuBaker, R. Qahwaji, S. Ipson, and M. Saleh, “One scan connected component labeling technique,” in IEEE International Conference on Signal Processing and Communications, Nov 2007, pp. 1283–1286.
[15]S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: primal estimated sub-gradient solver for svm,” Mathematical Programming, vol. 127, no. 1, pp. 3–30, 2011.
[16]A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in IEEE Conference on Computer Vision and Pattern Recognition, June 2009, pp. 413–420.
[17]M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets: one-sided selection,” in International Conference on Machine Learning. Morgan Kaufmann, 1997, pp. 179–186.
[18]Xilinx, Zynq-7000 All Programmable SoC Data Sheet: Overview, 2017.
[19]Xilinx, LogiCORE IP Floating-Point Operator v7.1 Product Guide, 2015.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top