跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宇達
研究生(外文):Yu-Da Yang
論文名稱:熱擠製-光固化式三維列印技術製作聚己內脂/聚乙二醇/氫氧基磷灰石/光合水膠之複合支架與其體外細胞反應之研究
論文名稱(外文):Biofabrication of Hybrid Scaffold Using Thermal Extrusion and Light Cured Three Dimensional Printing and Its In-Vitro Study of Biocompatibility
指導教授:江卓培江卓培引用關係
指導教授(外文):Cho-Pei Jiang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:動力機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:三維列印光硬化水膠組織工程GelMAmPEG-PCL-mPEG
外文關鍵詞:3D printingphotohardeningtissue engineeringGelMAmPEG-PCL-mPEGhydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在熱擠製式骨組織支架上種植細胞時,因為細胞尺寸小於支架孔洞尺寸,所以細胞會因為細胞貼附速度較慢及重力作用之下掉落至最底層,因此本實驗室將原本親水性較差的材料而改為親水性較高的材料來提升支架與細胞間的附著率。在細胞培養時,雖材料的親水性有提升,但細胞還是一樣難以均勻分布在支架的每一層,為改善這個問題電訪絲技術鋪於支架表面可使支架承接住細胞,使細胞可在再每一層成長,可是因為要做出理想及穩定的電紡絲需花費較多的時間,故本研究使用雙材料技術生物相容性水膠,可以將細胞混進水膠內,再將水膠填入組織工程支架,即可將細胞平均分布至支架的每一位置。
本實驗主要的支架材料為mPEG-PCL-mPEG,水膠材料為GelMA,本實驗將會對材料性質做介紹,機台製作流程,支架製作參數,體外細胞反應等。
經由實驗發現支架結合水膠進行細胞培養可以將細胞(MG-63)類骨母細胞平均分配至支架的每一部份,進行體外培養1、4、7天,細胞數量有逐日增加的趨勢。
When the cells are seeded on the scaffolds, because the size of the cells is smaller than the size of the scaffold pore, the cells will drop to the bottom due to slower cell attachment and gravitational effects. Therefore, our laboratory to the less hydrophilic material instead of the higher hydrophilic material to improve the scaffold and cell attachment rate. In the cell culture, although the material has increased hydrophilicity, but the cells are difficult to evenly distributed in each layer of scaffold. So that cells can grow in each layer, but because of the need to make a good and stable electrospin need to spend more time, so this study uses dual-material technology biocompatible hydrogel, the cells can be mixed into the hydrogel , Then fill the tissue engineering scaffold, the cells can be distributed evenly to each position of the scaffold.
In this study, mPEG-PCL-mPEG was used as the main scaffold and GelMA as the hydrogel material. The material properties, machine design, scaffold production parameters and in vitro cell response were described.
It was found that the scaffolds were able to distribute the MG-63 osteoblasts to each part of the scaffolds, and the number of cells was increased day by day in vitro.
摘要..............................................i
Abstract........................................iii
誌謝.............................................iv
目錄..............................................v
表目錄..........................................viii
圖目錄....................................... ....1
第一章 緒論........................................4
1.1前言...........................................4
1.2 研究背景.......................................5
1.3 論文架構.......................................7
第二章 文獻回顧.....................................8
2.1 骨組織工程支架所需要具備的性質....................8
2.2 組織工程支架介紹................................9
2.2.1 目前製作支架方法介紹及整理.....................9
2.3 光合水膠文獻回顧...............................14
第三章 實驗方法.....................................17
3.1研究架構........................................17
3.2 支架主要成分介紹................................18
3.3合成mPEG-PCL-mPEG之介紹.........................19
3.3.1合成mPEG550-PCL18900進料計算方式...............19
3.3.2 mPEG550-PCL18900改質mPEG550-PCL18900-COOH之合成程序................................................22
3.3.3 mPEG-PCL-mPEG合成方法.......................23
3.4材料與氫氧基磷灰石混合比例探討....................24
3.5 光合水膠高分子生醫材料..........................25
3.5.1合成光合水膠(GelMA)的步驟......................25
3.6 調配7.5%濃度之光合水膠及包細胞的方法.............29
3.7與細胞培養支架使用時細胞懸浮之情形模擬.............29
3.7.1計算水膠1cc-塑膠顆粒100萬顆之計算...............29
3.9 生醫支架三維列印機.............................31
3.9.1噴頭介紹......................................32
3.10軟體設定.......................................34
3.10.1切層軟體設定.................................34
3.10.2切層軟體雙噴頭設定............................35
3.11圖控程式(LabVIEW)..............................39
3.11.1支架製作參數調整..............................40
3.11.2支架性質觀察..................................40
3.12細胞實驗測定支架性質.............................41
3.12.1生物相容性測試(MTT assay).....................41
3.12.2細胞薄膜貼附實驗..............................42
3.12.3細胞活性分析法(Live/dead cell Viability Assays) ..................................................42
3.12.4培養天數對於細胞密度改變分析...................42
第四章 實驗結果....................................43
4.1材料分析結果與解決辦法...........................43
4.1.1電子顯微鏡外接能量色散X-ray光譜分析儀(SEM-EDS)檢測mPEG-PCL-mPEG之結果....................................43
4.1.2傅里葉轉換紅外光譜分析結果.....................45
4.1.3示差掃描量熱儀(DSC)結果.......................46
4.1.4材料黏度測試..................................46
4.1.5接觸角測試結果................................48
4.1.6抗壓強度結果..................................49
4.1.7維氏硬度結果..................................49
4.1.8與細胞培養支架使用時細胞懸浮之情形模擬...........50
4.2微結構觀察......................................51
4.2.1電子顯微鏡微結構探討...........................51
4.3細胞實驗測定支架性質.............................52
4.3.1生物相容性測試(MTT assay)......................52
4.3.2細胞薄膜貼附實驗...............................54
4.3.3細胞活性分析法(Live/dead cell Viability Assays)結果................................................54
4.3.4細胞密度計算結果...............................55
第五章 結論........................................56
參考文獻...........................................58
Abstract..........................................60
Extended Abstract..................................61
簡歷(CV)...........................................68
1.Maria Ann Woodruff,Dietmar Werner Hutmacher,The return of a forgotten polymer-Polycaprolactone in the 21st century
2.Cuadros, T.R., A.A. Erices, and J.M. Aguilera, Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater, 2015. 46: p. 331-42.
3.B. Subia, J.K.a.S.C.K., Biomaterial scaffold fabrication techniques for
potential tissue engineering applications.
4.Sin, D., et al., Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Materials Science and Engineering: C, 2010. 30(1): p. 78-85.
5.Dr. Domokos Bartis, D.J.P., Three dimensional tissue cultures and tissue engineering. 2011.
6.Ji, C., et al., Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomater, 2012. 8(2): p. 570-8.
7.Lei, B., et al., Nanofibrous gelatin-silica hybrid scaffolds mimicking the native extracellular matrix (ECM) using thermally induced phase separation. Journal of Materials Chemistry, 2012. 22(28): p. 14133-14140.
8.Nie, L., et al., Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids and Surfaces B-Biointerfaces, 2012. 100: p. 169-176.
9.Abdal-hay, A., et al., Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofibers for bone tissue engineering. Chemical Engineering Journal, 2014. 254: p. 612-622.
10.Faheem Ullah,Muhammad Bisyrul Hafi Othman,Fatima Javed,Zulkifli Ahmad,Hazizan Md. Akil,Classification, processing and application of hydrogels: A review
11.O. Wichterle, D. Lim Hydrophilic gels for biological use
12.新紀元周刊http://www.epochweekly.com/b5/180/8131.htm
13.Liu, X., et al., Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials, 2009. 30(12): p. 2252-8.
14.Jason W. Nichol,Sandeep T. Koshy, Hojae Bae, Chang M. Hwang,Seda Yamanlar,Ali Khademhosseini Cell-laden microengineered gelatin methacrylate hydrogels
15.Steve Jurvetson from Menlo Park, USA
16.Fu, S., et al., Injectable and thermo-sensitive PEG-PCL-PEG
17.Kanazawa, T., et al., Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG-PCL nanomicelles. European Journal of Pharmaceutics and Biopharmaceutics, 2012. 81(3): p. 470-477.
18.Šupová, M., Substituted hydroxyapatites for biomedical applications: A review. Ceramics International, 2015. 41(8): p. 9203-9231.
19.K. Kurashina,H. Kurita,Q.Wu,A.Ohtsuka,H. Kobayashi,Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits
20.M. Enamul Hoque,Terrence Teh Hooi Meng,Y.Leng Chuan,Moniruddin Chowdhury,R.G.S.V.Prasad,Fabrication and characterization of hybrid PCL/PEG 3D scaffolds
21.Hans R.Kricheldorf,I.Kreiser-Saunders,CarolineBoettcher,Polylactones: 31.Sn(ll)octoate-initiated polyerization of L-lactide:a mechanistic study
22.Lin RZ1, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM. Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel.
23.Paola Occhetta,Roberta Visone,Laura Russo,Laura Cipolla,Matteo Moretti,Marco Rasponi,VA-086 methacrylate gelatine photopolymerizable hydrogels
24.Erdemli, O., et al., Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids Surf B Biointerfaces, 2014. 117: p. 487-96.
25.http://www.hk-phy.org/atomic_world/lotus/lotus02_c.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊