跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊秉學
研究生(外文):Bing-Hsueh Yang
論文名稱:雙軸超音波及雷射輔助切削技術應用於鎳基超合金銑削之研究
論文名稱(外文):Application of Biaxial Ultrasonic and Laser Assisted Machining Techniques for Inconel 718 Milling
指導教授:林盛勇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與電腦輔助工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:Inconel 718超音波輔助雷射預熱輔助切削性能
外文關鍵詞:Inconel 718biaxial ultrasonically assistedlaser-assistedcutting performance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
鎳基超合金是一種時效硬化的Fe-Cr-Ni基變形高溫耐熱超合金,它具有較高的高溫強度、良好的抗氧化性、抗熱腐蝕性、斷裂韌性和疲勞性能,近年來被廣泛地運用於火箭發動機及航空飛機的耐熱零件。而鎳基超合金也具有高強度、低熱傳導率、易產生加工硬化等性質,導致在加工過程中刀具易產生快速磨損,嚴重加工表面傷害等缺陷,因此,改善鎳基超合金切削性能、加工表面品質及刀具壽命的提升為長期以來相關業者最關心的課題。
本文建構共五階段鎳基超合金銑削實驗,包含無輔助、各單項輔助及多項混合輔助系統以驗證輔助效果之差異及優劣。首先,第一階段進行無輔助銑削以監測切削性能之變化及加工參數之調整。接著,在第二階段導入雷射系統,設定雷射與刀具間距離,測試雷射預熱是否能有效地降低切削力,第三至第四系統將超音波輔助銑削系統架設於工具機工作台上,測試、調校與修飾以確保單、雙軸振盪作動確實,最後第五階段將雙軸超音波輔助結合雷射輔助系統以建構一混合式輔助切削加工系統。實驗中同時觀測表面粗糙度、表面形貌、邊緣形貌及刀具磨耗於各加工參數之變化趨勢,期提高此難切削材的可切削性,進而取得更好的表面粗糙度、表面形貌與刀具磨耗。本文實驗採用耐磨耗、低摩擦係數的nano-Si®鍍層圓鼻鎢鋼端銑刀,透過加工製程參數(主軸轉速、徑向銑削深度、進給速度)全因子組合的調變規劃,針對鎳基超合金進行上述五階段之銑削加工。於實驗過程中,使用動力計監測銑削力的變化,以工具顯微鏡觀測加工完成表面形貌與邊緣形貌,並以接觸式表面粗度儀進行表面粗糙度之量測。結果顯示,雷射預熱輔助可有效地減低切削力並提升切削性能,雙軸超音波雙軸振盪則可以大幅度提升刀具壽命,結合以上二種輔助系統的雙軸超音波雙軸振盪混合雷射預熱輔助銑削系統,各項表現上皆優於無輔助或各單項輔助系統,在使用參數為主軸轉速6000rpm、徑向切深0.01mm、進給率300mm/min時,求得本實驗的最佳表面粗糙度0.216μm,刀具磨耗13.849μm。明顯地改善刀具磨耗與表面粗糙度。
The high temperature heat-resistant alloy such as Inconel 718 is a kind of Fe-Cr-Ni based super alloy through age-hardening treatment. It possesses high yield and ultimate strength, high fatigue strength, high working temperature, good corrosive resistance. It has been widely used for aerospace and other components that operate at high temperatures and hostile environments; such as, gas turbine, rocket engines, missile parts and hot extrusion tooling. However, these unique and desirable heat-resistant characteristics of super-alloys, on the other hand, impair their machinabilities greatly resulting in low material removal rate, short tool life and poor surface finish. Therefore, the cutting performance promotion and machined surface quality improvement of Inconel 718 resulting in extending the cutting-tool service life has long been the most concerned issue for related manufacturers.
The five stage experiments including without assistance, single and hybrid assisted machining systems on Inconel 718 milling were constructed in this study in order to verify the assisted effect on cutting performance and to compare the difference, merit and drawback among them. First of all, the milling experiment without assistance was performed to investigate the variations of cutting performance and the results were used for the suitable process parameter planning in the subsequent stage experiments. Next, a laser assisted system was introduced in the second stage where the spacing distance between the laser spot and cutting-tool along the cutting direction was set to test whether laser preheating may effectively reduce the cutting force. A biaxial ultrasonically assisted system with only one-axis oscillation (x or y direction) and with simultaneous two-axis oscillations (x and y direction) were subsequently introduced at the third to fourth stage experiments, respectively. While a biaxial ultrasonically and the laser assisted systems are integrated together to construct a hybrid assisted cutting system at the last stage experiment. Under these assistances, milling experiments of Inconel 718 by cutting-tool of tungsten carbide with nano-Si® coating were conducted. And the full factorial experiments of process parameter combinations such as spindle speed, radial cutting depth and feed rate were also planned. During the experiments, dynamometer is used to monitor the variation of cutting force. Tool wear, machined surface and side-edge surface morphology of the workpiece were measured by tool-microscope off-line. Surface roughness measurement through a probe contact type instrument was also performed. The results indicated that the laser-preheating assisted system could effectively reduce the cutting force as well as enhance the cutting performance. The effect of the biaxial ultrasonic oscillation on tool service life could greatly be promoted. Furthermore, the cutting performance exhibited in the integrated hybrid assisted milling prevails over that in milling without assistance as well as with each single assisted system. Under this hybrid assisted, the better surface roughness of 0.216μm was obtained at spindle speed of 6000 rpm, radial cutting depth of 0.01 mm, and feed rate of 300mm/min, accompanied by a maximum cutting-tool wear of 13.849μm. Because the use of this integrated hybrid assisted system, the cutting performance of tool wear and surface roughness could be improved significantly.
目錄
摘要……………i
Abstract………ii
誌謝……………iv
目錄……………v
表目錄……………vi
圖目錄……………vii
第一章 前言……………1
1.1 研究背景……………1
1.2 研究動機與目的……………2
1.3 文獻回顧……………3
1.4 論文架構……………8
第二章 理論基礎……………9
2.1 鎳基超合金的結構與特性……………9
2.2 超音波輔助技術……………9
2.3 雷射輔助技術……………10
2.4 金屬切削理論……………11
2.5 刀具磨耗……………13
第三章 實驗方法與規劃……………14
3.1 工件材料與刀具特性……………15
3.2 實驗儀器設備與規格……………17
3.3 實驗方法與執行步驟……………24
第四章 結果與討論……………27
4.1無輔助銑削……………27
4.2雷射預熱系統輔助銑削……………31
4.3雙軸向超音波單軸振盪系統輔助銑削……………36
4.4雙軸向超音波雙軸振盪系統輔助銑削……………39
4.5雙軸向超音波雙軸振盪混合雷射預熱系統輔助銑削……………44
第五章 結論……………52
參考文獻……………53
附錄A……………57
附錄B……………65
附錄C……………73
Extended Abstract……………81
作者簡歷……………84
[1]S. Zhang, J.F. Li, Y.W. Wang, 2012, Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions, J. Clean. Prod., Vol.32, pp.81-87.
[2]H.A. Sonawane, S.S. Joshi, 2012, Analysis of machined surface quality in a single-pass of ball-end milling on Inconel 718, Journal of Manufacturing Processes, Vol.14, pp.257-268.
[3]H.Z. Li, H. Zeng, X.Q. Chen, 2006, An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 coated carbide inserts, Int. J. Mach. Tools Manuf., Vol.180, pp.296-304.
[4]E.Q. Ezugwu, D.A. Fadare, J. Bonney, R.B. Da Silva, W.F. Sales, 2005, Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 ally using an artificial neural network, Int. J. Mach. Tools Manuf., Vol.45, pp.1375-1385.
[5]E.O. Ezugwu, J. Bonney, D.A. Fadare, W.F. Sales, 2005, Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing condition with various coolant supply pressures, J. Mater. Process. Technol., Vol.162-163, pp.609-614.
[6]R.M. Arunachalam, M.A. Mannan, A.C. Spowage, 2004, Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools, Int. J. Mach. Tools Manuf., Vol.44, pp.1481-1491.
[7]J. Díaz-Álvarez, J.L. Cantero, H. Miguélez, X. Soldani, 2014, Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718, Int. J. Mec. Sci., Vol.82, pp.161-169.
[8]L.M. Maiyar, R. Ramanujam, K. Venkatesan, J. Jerald, 2013, Optimization of machining parameters for end milling of Inconel 718 super alloy using Taguchi based grey relational analysis, Procedia Engineering, Vol.64, pp.1276-1282.
[9]A. Altin, M. Nalbant, A. Taskesen, 2007, The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools, Materials and Design, Vol.28, pp.2518-2522.
[10]D.G. Thakur, B. Ramamoorthy, L. Vijayaraghavan, 2009, Study on the machinability characteristics of superalloy Inconel 718 during high speed turning, Materials and Design, Vol.30, pp.1718-1725.
[11]R.S. Pawade, Suhas S. Joshi, P.K. Brahmankar, 2008, Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718, Int. J. Mach. Tools Manuf., Vol.48, pp.15-28.
[12]A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere, 2007, Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools, Wear, Vol.262, pp.931-942.
[13]M. Salio, T. Berruti, G. De Poli, 2006, Prediction of residual stress distribution after turning in turbine disks, Int. J. Mech. Sci. , Vol.48, pp.976-984.
[14]D.K. Aspinwall, R.C. Dewes, E.G. Ng, C. Sage, S.L. Soo, 2007, The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions, Int. J. Mach. Tools Manuf., Vol.47, pp.1839-1846.
[15]R.M. Arunachalam, M.A. Mannan, A.C. Spowage, 2004, Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, Int. J. Mach. Tools Manuf., Vol.44, pp.879-887.
[16]N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 2006, Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering A, Vol.424, pp.318-325.
[17]V.I. Babitsky, A.V. Mitrofanov, V.V. Silberschmidt, 2004, Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics, Vol.42, pp.81-86.
[18]D. Bhaduri, S.L. Soo, D. Novovic, D.K. Aspinwall, P. Harden, C. Waterhouse,S. Bohr, A.C. Mathieson, M. Lucas, 2013, Ultrasonic assisted creep feed grinding of Inconel 718, Procedia CIRP, Vol.6, pp.615-620.
[19]A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 2004, Finite element analysis of ultrasonically assisted turning of Inconel 718, J. Mater. Process. Technol., Vol.153-154, pp.233-239.
[20]D.H. Kim, C.M. Lee, 2014, A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel, International Journal of Heat and Mass Transfer, Vol.71, pp.264-274.
[21]V.G. Navas, I. Arriola, O. Gonzalo, J. Leunda, 2013, Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM), Int. J. Mach. Tools Manuf., Vol.74, pp.19-28.
[22]Z.Y. Wang, K.P. Rajurkar, J. Fan, S. Lei, Y.C. Shin, G.. Petrescu, 2004, Hybrid machining of Inconel 718, Int. J. Mach. Tools Manuf., Vol.43, pp.1391-1396.
[23]M, Anderson, R, Patwa, Y. C. Shin, 2006, Laser-assisted machining of Inconel 718 with an economic analysis, Int. J. Mach. Tools Manuf., Vol.46, pp.1879-1891.
[24]T. Obikawa, M. Yamaguchi, 2015, Suppression of notch wear of a whisker reinforced ceramic tool in air-jet-assisted high-speed machining of Inconel 718, Precision Engineering, Vol.39, pp.143-151.
[25]N.G. Patil, Ameer Asem, R.S. Pawade, D.G. Thakur, P.K. Brahmankar, 2014, Comparative study of high speed machining of Inconel 718 in dry condition and by using compressed cold carbon dioxide gas as coolant, Procedia CIRP, Vol.24, pp.86-91.
[26]A. Aramcharoen, S.K. Chuan, 2014, An experimental investigation on cryogenic milling of Inconel 718 and its sustainability assessment, Procedia CIRP, Vol.14, pp.529-534.
[27]Y.H. Fan, Z.P. Hao, J.Q. Lin, Z.X. Yu, 2014, New observations on tool wear mechanism in machining Inconel 718 under water vapor+air cooling lubrication cutting conditions, Journal of Cleaner Production, Article in press
[28]C. Courbon, F. Pusavec, F. Dumont, J. Rech, J. Kopac, 2013, Tribological behavior of Ti6Al4V and Inconel 718 under dry and cryogenic conditions-Application to the context of machining with carbide tools, Tribology International, Vol.66, pp.72-82.
[29]A. Shokrani, V. Dhokia, S.T. Newman, R. Imani-Asrai, 2012, An initial study of the effect of using liquid nitrogen coolant on the surface roughness of Inconel 718 nickel-based alloy in CNC milling, Procedia CIRP, Vol.3, pp.121-125.
[30]T. Kitagawa, A. Kubo and K. Maekawa, 1997, Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn, Wear, Vol.202, pp.142-148.
[31]陳紹賢、郭春寶,Inconel-718與Mar-247銑削性能研究,中正大學機械所博士論文,95年
[32]林仲譚、陳國亮,鎳基合金Inconel 718銑削加工特性之研究,雲林科大機械所碩士論文,96年
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top