跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白崇智
研究生(外文):Bai,Chong-Zhi
論文名稱:脂肪分解酵素與物理處理對於羽絨清洗之應用
論文名稱(外文):The Application of Lipase and Physical Treatment on Feather Down Washing Process
指導教授:王翰聰
指導教授(外文):Wang,Hang-Tsung
口試委員:王淑音黃士哲
口試委員(外文):Wang,Shu-YinHuang,Shih-Che
口試日期:2017-06-22
學位類別:碩士
校院名稱:中國文化大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:日文
論文頁數:77
中文關鍵詞:羽絨洗滌程序脂肪酶氣泡處理
外文關鍵詞:Feather downwashing processLipaseBubble treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:502
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討脂肪分解酵素添加與氣泡洗滌程序,在羽絨精洗流程中之應用方式,
及其對於羽絨精洗後成品性狀之影響。由於羽絨原料毛含有油脂與雜質,氧化與污染可
能造成產品異味與清潔度問題,目前現場操作以大量清水及清潔劑來洗滌羽絨,造成大
量用水需求,同時也造成水污染之問題。本試驗利用少量脂肪分解酵素添加於洗滌流程
中,搭配較低用水量及合適溫度,透過不同添加順序進行洗滌模式優化,以有效降低成
本並提升成品品質。第一階段試驗以兩種商用脂肪酶(Novozymes® CALB L 及Lipolase
100 L),於清潔劑洗滌程序前後搭配添加,以高中低三種含脂量之初洗羽絨為原料,測
定清洗後之羽絨成品殘留脂肪量,以探討酵素添加時機。第二階段試驗在洗清流程中,
再加入氣泡物理洗滌,搭配不同洗滌順序,對三種含脂率原料毛進行洗滌測試,分析其
殘餘脂肪酸組成、洗滌損失、蓬鬆度及外觀,以驗證氣泡洗滌對成品性狀之影響。酵素
添加特性顯示, Lipolase 100 L 之添加對於長鏈脂肪酸( C14、C18 及C20:1)有較佳作用
活性,且其對於羽絨油脂移除之效果較佳。清洗高含脂量(高於3.0%)之羽絨原毛時,
先以清潔劑進行第一次洗滌脫水後,再噴灑脂肪分解酵素,在40℃下反應後之洗滌效果
較佳,其脂肪移除率可達70%以上。在氣泡洗滌加入後,若於第二次洗清階段使用氣泡
處理,對於羽絨洗滌後的性狀損傷最小,且絨朵撐開程度也較佳。全程使用氣泡洗滌雖
然對於成品羽絨結構具有最佳之膨化效果,但是洗滌後回收率降低。而在清洗中含脂量
(低於3.0%,大於1%)之羽絨原料時,建議可使用Lipolase 100 L 進行添加,其添加順序
並不影響洗滌結果。使用氣泡洗滌的時機為第二次水洗時,其能提升低清潔劑濃度下之
脂肪移除率,使用氣泡洗滌能提高成品蓬鬆度,並使絨朵狀態較佳。低含脂率羽絨原料
(含脂率<1%)洗滌時,因本身含脂率低,不須添加酵素即可達到良好脂肪移除效果。本
試驗結果能提供現場對於不同來源之羽絨原料使用時,在洗滌流程上建立符合需求的洗
滌流程,提升洗滌效率與成品品質,同時降低成本。
This study attempted to investigate the effect of lipase supplementation and bubble treatment sequences on feather down washing process and product characteristics. The different raw feather down materials contained different levels of contaminants and fat, it resulted in peculiar smell problems under undesirable oxidation. Normal down washing process required large amount of water and detergent, raising a problem of water pollution. This study applied low level lipase with different supplementation sequences under suitable temperature and water loading, trying to find an optimal washing process for reducing the production cost and increasing the product quality. In the first stage, three fat levels feather down were exanimated by two kinds of lipase (Novozymes® CALB L and Lipolase 100 L) with different supplementation sequences in normal washing processes. The residual fat of feather down after each treatment was assayed to determine the effect of lipase loading on the fat removing ability. In the second stage, the bubble treatment was applied on three fat levels feather down washing process. The residual fat, washing loss, product filling power and product appearance of feather down after each treatment was assayed to evaluate the effect of bubble treatment on feather down washing process. The fatty acid analysis result indicated that Lipolase 100 L showed higher affinity on long-chain fatty acid such as C14 (Myristic acid), C18 (Stearic acid) and C20:1 (cis-11-Eicosenpuc acid). Supplementation of lipase at 40℃ in the first detergent washing process after spin dry resulted in the better washing efficiency in high fat feather down materials (fat > 3.0%). The fat removing rate could over 70% under this operation condition. When bubble treatment applied in the second water washing stages, it resulted in the minimal damage of feather down and also bring better product appearance. When washing medium fat feather down materials, the process with Lipolase 100 L supplementation showed better fat removing ability. However, the loading sequence showed no effect on fat removing ability. The bubble treatment should be applied on the second water washing process, it resulted in the better cleaning performance under lower detergent concentration. The bubble treatment also increased the filling power value and feather down performance. Low fat feather down materials showed no need to apply lipase on washing process. This study provided suitable washing process for different fat content feather down material. These washing processes not only reduced water requirement and also increased the product appearance.
壹、文獻回顧..........................................................................................................................................1
一、羽絨簡介......................................................................................................................................1
(一)外觀與特性...............................................................................................................................1
(二)產業現況...................................................................................................................................3
(三)檢定標準...................................................................................................................................4
二、清潔劑與酵素..............................................................................................................................6
(一)清潔劑.....................................................................................................................................10
(二)酵素於清潔劑之應用.............................................................................................................12
(三)脂肪分解酵素之特性.............................................................................................................15
三、物理洗滌處理............................................................................................................................17
(一)超音波在工業上之應用.........................................................................................................17
(二)氣泡在工業上之應用.............................................................................................................19
四、清潔劑組成對油脂污垢之影響................................................................................................21
(一)羽絨油脂來源.........................................................................................................................21
(二)脂肪酶之專一性.....................................................................................................................21
貳、材料與方法....................................................................................................................................23
一、實驗設計....................................................................................................................................23
二、酵素添加於羽絨洗滌之應用....................................................................................................23
(一)羽絨殘留脂肪測定.................................................................................................................23
(二)脂肪酶活性分析.....................................................................................................................24
(三)初步酵素選擇.........................................................................................................................24
(四)酵素添加順序對洗滌效果之影響.........................................................................................26
(五)脂肪酸組成分析.....................................................................................................................27
三、氣泡使用於羽絨洗滌之應用....................................................................................................28
(一)氣泡使用順序對於洗滌結果之影響.....................................................................................28
(二)洗滌損失率.............................................................................................................................29
(三)蓬鬆度.....................................................................................................................................29
(四)成品外觀顯微照.....................................................................................................................29
(五)亮度測定.................................................................................................................................29
四、統計分析....................................................................................................................................29
参、結果................................................................................................................................................30
一、羽絨原料與酵素活性分析........................................................................................................30
(一)羽絨原料分析.........................................................................................................................30
(二)酵素活性分析.........................................................................................................................30
二、酵素添加於羽絨洗滌之應用....................................................................................................32
(一) 初步酵素選擇.......................................................................................................................32
(二)酵素添加順序對羽絨脂肪移除率之影響.............................................................................33
(三)酵素添加順序對於羽絨殘留脂肪酸之影響.........................................................................37
三、氣泡使用於羽絨洗滌之應用....................................................................................................41
(一)氣泡添加對脂肪移除率之影響.............................................................................................41
(二)氣泡處理對羽絨外觀之影響.................................................................................................45
(三)氣泡處理對羽絨蓬鬆度之影響.............................................................................................45
(四)氣泡處理對羽絨亮度之影響.................................................................................................45
(五) 成品性狀間之相關性...........................................................................................................53
肆、討論................................................................................................................................................54
一、清潔劑添加脂肪酶對羽絨洗滌影響........................................................................................54
二、氣泡處理....................................................................................................................................57
三、洗滌後成品性狀........................................................................................................................58
(一) 氣泡添加對於蓬鬆度之影響...............................................................................................58
(二) 洗滌後亮度之變化...............................................................................................................59
伍、結論................................................................................................................................................60
參考文獻................................................................................................................................................61
附圖........................................................................................................................................................67
丁小明和 王莉。 2007。氣泡清洗方式清洗葉類蔬菜的試驗研究。農機化研究(12),
119-123。
王學川、劉葉、強濤濤、林啟濤、鄭漢平、陳學峰、顧衛兵和路思學。2014。幾種典型
陰、陽及非離子表面活性劑對鴨絨洗滌效果的影響。陝西科技大學學報:自然科學
版,32(1):16-19。
史崴元。2011。含瘤胃微生物抑菌物質酵母菌於肉雞與蛋雞飼料添加劑之利用。碩士論
文。中國文化大學生物科技研究所,台北市。
江文全和葉頌溫。2011。台灣羽絨。台北市:農委會。
胡子興,羅勝利。2006。單純形優化試驗對羽絨洗滌劑合成技術的優化。江蘇技術師範
學院學報12(2):17-22。
高晶、於偉東和潘寧。2007。羽絨纖維的形態結構表徵。紡織學報28(1):1-4。
高翔、陸兆新、張立奎和鬱志芳。2003。超聲波氣泡清洗鮮切西洋芹的應用研究。食品
工業科技24(11):27-29。
張瑞。2010。超聲波氣泡清洗去除有機磷農藥殘留效果研究。博士論文。南京農業大學。
張學發、楊昆、馬駿和陳斌。2011。微/納米氣泡技術在金屬表面脫脂處理中的應用研究。
清洗世界27(10):29-33。
陳斌。2005。靜止水中單個上升氣泡的直接數值模擬。工程熱物理學報26(6):980-982.
陳勤超。2007。水流式與氣泡式蔬菜清洗機清洗效果的比較與研究。博士論文。華中農
業大學。
蔣炎坤。2004。水下排氣氣泡運動特性及其數值模擬研究。華中科技大學學報(自然科
學版)。2004(10): 49-50。
Aaslyng, D., Gormsen, E., and Malmos, H. (1991). Mechanistic studies of proteases and
62
lipases for the detergent industry. Journal of Chemical Technology and Biotechnology,
50(3), 321-330.
Adulkar, T. V., and Rathod, V. K. (2014). Ultrasound assisted enzymatic pre-treatment of high
fat content dairy wastewater. Ultrasonics sonochemistry, 21(3), 1083-1089.
Basto, C., Tzanov, T., and Cavaco-Paulo, A. (2007). Combined ultrasound-laccase assisted
bleaching of cotton. Ultrasonics sonochemistry, 14(3), 350-354.
Bajpai, D. (2007). Laundry detergents: an overview. Journal of oleo science, 56(7):327-340.
Crooks, G. E., Rees, G. D., Robinson, B. H., Svensson, M., and Stephenson, G. R. (1995).
Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and
Rhizomucor miehei lipases in AOT‐stabilized water‐in‐oil microemulsions: I. Effect
of pH and water content on reaction kinetics. Biotechnology and bioengineering, 48(1),
78-88.
De los Rios, A. P., Hernández‐Fernández, F. J., Tomás‐Alonso, F., Gómez, D., and Víllora, G.
(2008). Synthesis of flavour esters using free Candida antarctica lipase B in ionic liquids.
Flavour and fragrance journal, 23(5), 319-322.
Eliason, C. M., and Shawkey, M. D. (2011). Decreased hydrophobicity of iridescent feathers:
a potential cost of shiny plumage. Journal of Experimental Biology, 214(13), 2157-2163.
Flipsen, J. A. C., Appel, A. C. M., Van der Hijden, H. T. W. M., and Verrips, C. T. (1998).
Mechanism of removal of immobilized triacylglycerol by lipolytic enzymes in a
sequential laundry wash process. Enzyme and Microbial Technology, 23(3), 274-280.
Fujii, T., Tatara, T., and Minagawa, M. (1986). Studies on applications of lipolytic enzyme in
detergency I. Effect of lipase fromCandida cylindracea on removal of olive oil from
cotton fabric. Journal of the American Oil Chemists' Society, 63(6), 796-799.
Gotoh, K., and Hirami, C. (2012). Soil removal from polyester fabric by laundering with
frequency-modulated ultrasound. Journal of oleo science, 61(5), 249-254.
Gotoh, Y., Serizawa, A., Eguchi, T., Tanaka, H., and Izumi, M. (2006). Oil separation from oil
63
polluted soil by micro bubble injection and separation mechanisms. Japanese Journal of
Multiphase Flow, 20(1), 39.
Grbavčić, S., Bezbradica, D., Izrael-Živković, L., Avramović, N., Milosavić, N., Karadžić, I.,
and Knežević-Jugović, Z. (2011). Production of lipase and protease from an indigenous
Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility
study with detergent ingredients and washing performance. Bioresource Technology,
102(24), 11226-11233.
Gupta, N., Rathi, P., and Gupta, R. (2002). Simplified para-nitrophenyl palmitate assay for
lipases and esterases. Analytical biochemistry, 311(1), 98-99.
Hasan, F., Shah, A. A., and Hameed, A. (2006). Industrial applications of microbial lipases.
Enzyme and Microbial technology, 39(2), 235-251.
Hemachander, C., and Puvanakrishnan, R. (2000). Lipase from Ralstonia pickettii as an
additive in laundry detergent formulations. Process Biochemistry, 35(8), 809-814.
Iizuka, A., Iwata, W., Shibata, E., and Nakamura, T. (2016). Physical Washing Method for
Press Oil Removal from Side Surfaces Using Microbubbles under Ultrasonic Irradiation.
Industrial and Engineering Chemistry Research, 55(40), 10782-10787.
Imadate, F., and KAWABATA, J. (2004). A Soil Washing Technique for Oil Contaminated
Sand by Using Micro Bubbles. Doboku Gakkai Ronbunshu, 2004(776), 39-48.
Jacob, J., Balthazart, J., and Schoffeniels, E. (1979). Sex differences in the chemical
composition of uropygial gland waxes in domestic ducks. Biochemical Systematics and
Ecology, 7(2), 149-153.
Jaeger, K. E., and Eggert, T. (2002). Lipases for biotechnology. Current opinion in
biotechnology, 13(4), 390-397.
Kumar, R., Modak, J., and Madras, G. (2005). Effect of the chain length of the acid on the
enzymatic synthesis of flavors in supercritical carbon dioxide. Biochemical engineering
journal, 23(3), 199-202.
64
Kwon, H. J., Choo, Y. K., Choi, Y. I., Kim, E. J., Kim, H. K., Heo, K. N., ... and Kang, C. W.
(2014). Carcass characteristics and meat quality of korean native ducks and commercial
meat-type ducks raised under same feeding and rearing conditions. Asian-Australasian
Journal of Animal Sciences (AJAS), 27(11), 1638-1643.
Macrae, A. R. (1983). Lipase-catalyzed interesterification of oils and fats. Journal of the
American Oil Chemists' Society, 60(2), 291-294
Maharana, A., and Ray, P. (2015). A novel cold-active lipase from psychrotolerant
Pseudomonas sp. AKM-L5 showed organic solvent resistant and suitable for detergent
formulation. Journal of Molecular Catalysis B: Enzymatic, 120, 173-178.
Miyamoto, M., Ueyama, S., Hinomoto, N., Saitoh, T., Maekawa, S., and Hirotsuji, J. (2007).
Degreasing of solid surfaces by microbubble cleaning. Japanese journal of applied
physics, 46, 1236-1243.
Moholkar, V. S., and Warmoeskerken, M. M. (2002). Mechanistic Aspects and Optimization
of UltrasonicWashing. Aatcc Review, 2(2),34-37.
Nerurkar, M., Joshi, M., Pariti, S., and Adivarekar, R. (2013). Application of lipase from
marine bacteria Bacillus sonorensis as an additive in detergent formulation. Journal of
Surfactants and Detergents, 16(3), 435-443.
Nicolaides, N. (1965). Skin lipids. II. Lipid class composition of samples from various species
and anatomical sites. Journal of the American Oil Chemists' Society, 42(8), 691-702.
Paul, T., Halder, S. K., Das, A., Bera, S., Maity, C., Mandal, A., ... & Mondal, K. C. (2013).
Exploitation of chicken feather waste as a plant growth promoting agent using keratinase
producing novel isolate Paenibacillus woosongensis TKB2. Biocatalysis and Agricultural
Biotechnology, 2(1), 50-57.
Pan, Z., Han, S., Lin, Y., and Zheng, S. (2008). Expression of Candida antarctica lipase B on
yeast surface and synthesis of ethyl hexanoate catalyzed by CALB. Chinese journal of
biotechnology, 24(4), 673-678.
65
Park, B., and Son, Y. (2017). Ultrasonic and mechanical soil washing processes for the
removal of heavy metals from soils. Ultrasonics sonochemistry, 35, 640-645.
Rathi, P., Saxena, R. K., and Gupta, R. (2001). A novel alkaline lipase from Burkholderia
cepacia for detergent formulation. Process Biochemistry, 37(2), 187-192.
Romdhane, I. B. B., Fendri, A., Gargouri, Y., Gargouri, A., and Belghith, H. (2010). A novel
thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in
laundry detergents. Biochemical Engineering Journal, 53(1), 112-120.
Sandilands, V., Powell, K., Keeling, L., and Savory, C. J. (2004). Preen gland function in layer
fowls: factors affecting preen oil fatty acid composition. British poultry science, 45(1),
109-115.
Schmidt, J. A., Browning, G. F., and Markham, P. F. (2004). Mycoplasma hyopneumoniae p65
surface lipoprotein is a lipolytic enzyme with a preference for shorter-chain fatty acids.
Journal of bacteriology, 186(17), 5790-5798.
Shintre, M. S., Ghadge, R. S., and Sawant, S. B. (2002a). Kinetics of esterification of lauric
acid with fatty alcohols by lipase: effect of fatty alcohol. Journal of Chemical
Technology and Biotechnology, 77(10), 1114-1121.
Shintre, M. S., Ghadge, R. S., and Sawant, S. B. (2002b). Lipolase catalyzed synthesis of
benzyl esters of fatty acids. Biochemical Engineering Journal, 12(2), 131-141.
Šinkūnienė, D. (2014). Lipase selection and application for fatty acid ester synthesis
(Doctoral dissertation, Vilnius University).
Smulders, E. (2002). Laundry detergents. Wiley‐VCH Verlag GmbH and Co. KGaA.
Son, Y., Cha, J., Lim, M., Ashokkumar, M., and Khim, J. (2011). Comparison of ultrasonic
and conventional mechanical soil-washing processes for diesel-contaminated sand.
Industrial and Engineering Chemistry Research, 50(4), 2400-2407.
Stoner, M. R. (2004). Mechanistic Studies of Enzyme Degradation in Liquid Detergent.
Salager, J. L. (2002). Surfactants types and uses. Firp Booklet, (E300A).
66
Tano, Y., Iizuka, A., Shibata, E., and Nakamura, T. (2013). Physical washing method for the
removal of press oil using the high-speed movement of microbubbles under ultrasonic
irradiation. Industrial and Engineering Chemistry Research, 52(44), 15658-15663.
Vaysse, L., Ly, A., Moulin, G., and Dubreucq, E. (2002). Chain-length selectivity of various
lipases during hydrolysis, esterification and alcoholysis in biphasic aqueous medium.
Enzyme and Microbial Technology, 31(5), 648-655.
Yachmenev, V. G., Bertoniere, N. R., and Blanchard, E. J. (2002). Intensification of the
bio‐processing of cotton textiles by combined enzyme/ultrasound treatment.Journal of
Chemical Technology and Biotechnology,77(5), 559-567.
Yangxin, Y. U., Jin, Z., & Bayly, A. E. (2008). Development of surfactants and builders in
detergent formulations. Chinese Journal of Chemical Engineering,16(4):517-527.
Vorderwülbecke, T., Kieslich, K., and Erdmann, H. (1992). Comparison of lipases by different
assays. Enzyme and Microbial Technology, 14(8), 631-639.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top