( 您好!臺灣時間:2022/12/06 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):LU, YU-REN
論文名稱(外文):Formulation Design and Characterizations of Hydrophilic and Hydrophobic Drugs Incorporated Solid Lipid Nanoparticles by Double-Emulsified Method
外文關鍵詞:Solid lipid nanoparticlesDouble emulsified techniqueCaprylyl/capryl glucosideHydrophilic drugsEncapsulation efficiency
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用兩階段之超音波震盪法開發W/O/W型雙乳劑固態脂質奈米粒同時包覆疏水性藥物維生素A棕櫚酸酯(RP)與親水性藥物菸鹼醯胺(Vit B3),而此方法具有無須添加有機溶媒即能得到小粒徑且穩定之固態脂質奈米粒的優點。本實驗將以不同種類之非離子型界面活性劑,分別為辛基/癸基葡萄糖苷(P-810)與Tween 80 (T-80)對SLNs之粒徑與穩定性之影響,結果顯示P-810使用較少之添加量即能得到粒徑小(約185 nm)且較穩定(靜置60天粒徑無顯著差異)之SLNs,螢光顯微鏡測定進一步證實SLNs成功地同時包覆疏水性與親水性藥物,最後選擇最穩定之配方(P2)進行包覆藥物並進行包覆率測定,結果顯示,RP包覆率約87%,Vit B3則約32% 。未來研究目標將設法改善其包覆率,以符合化妝品/藥品傳輸系統之應用。
In this study, solid lipid nanoparticles (SLNs) were prepared by w/o/w double emulsified technique via a two-stage sonication method to encapsulate both a hydrophobic drug (retinyl palmitate, RP) and a hydrophilic drug (nicotinamide, Vit B3). The advantage of the current method is to obtain a smaller particle size and more stable SLNs without adding organic solvents. Caprylyl/capryl glucoside (Plantacare® 810, P-810) and Tween 80 (T-80) were used as hydrophilic emulsifiers to understand their effects on the particle size and stability of SLNs. Compared with T-80, the results showed that P-810 was able to obtain smaller nanoparticles of SLNs (~ 185 nm). Moreover, it formed a stable SLNs system (no significant difference in particle size after 60 days of storage at 4oC) with less amount of surfactants adding. Fluorescence microscopy of SLNs further confirmed that the hydrophobic and hydrophilic drugs were both successfully incorporated. Finally, an optimal formula P2 was chosen to determine the encapsulation efficiency. The results showed that encapsulation efficiency of RP and Vit B3 were ~ 87% and ~ 32%, respectively. Future studies are needed to improve the encapsulation efficiency for the future applications as the cosmetic / drug delivery system.
謝誌 i
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 x
一、緒論 1
1.1 奈米載體(Nanocarriers) 1
1.2脂質奈米粒(Lipid nanoparticles) 2
1.3 SLNs之組成原料 7
1.4痤瘡(Acne) 19
1.5 痤瘡於現階段的治療方式 19
1.6 維生素A及其衍生物 20
1.7 菸鹼醯胺(Nicotinamide) 24
1.8實驗動機 26
1.9實驗目的 27
1.10乳劑之種類 30
二、材料與方法 32
2.1 材料 32
2.2 儀器 33
2.3 W/O/W型雙乳劑固態脂質奈米粒(SLNs)之製備 34
2.4 粒徑分析 37
2.5 樣品穩定性測試 38
2.6 螢光顯微鏡分析 39
2.7 再結晶度測定 40
2.8 pH值測定 41
2.9 Retinyl palmitate (RP)之包覆效率 41
2.10 Nicotinamide (Vit B3)之包覆效率 42
三、結果與討論 43
3.1 固態脂質奈米粒(SLNs)之粒徑分析 43
3.2 固態脂質奈米粒(SLNs)之穩定性測試 48
3.3 靜置試驗 53
3.4 高速離心試驗 56
3.5 螢光顯微鏡分析 57
3.6 再結晶度測定 59
3.7 pH值測定 63
3.8 包覆RP與Vit B3固態脂質奈米粒(SLNs)之粒徑分析 64
3.9 包覆RP與Vit B3固態脂質奈米粒(SLNs)之包覆率 68
四、結論 73
五、參考文獻 75
六、附錄 79

Akanksha Garud, D.S., Navneet Garud, Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. International Current Pharmaceutical Journal, 2012. 1(11).
Katouzian, I. and S.M. Jafari, Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, 2016. 53: p. 34-48.
Bunker, A., A. Magarkar, and T. Viitala, Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. Biochim Biophys Acta, 2016. 1858(10): p. 2334-52.
Volkhard Jenninga, A.G., Monika SchaÈfer-Kortingb, Sven H. Gohlaa,*, Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. European Journal of Pharmaceutics and Biopharmaceutics, 2000: p. 211-218.
Sanchez-Lopez, E., et al., Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye - Part II - Ocular drug-loaded lipid nanoparticles. Eur J Pharm Biopharm, 2017. 110: p. 58-69.
Cruz, Z., et al., Lipid Nanoparticles. 2015: p. 313-331.
Lopes, S.C.d.A., et al., Liposomes as Carriers of Anticancer Drugs. 2013.
Pardeike, J., A. Hommoss, and R.H. Muller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm, 2009. 366(1-2): p. 170-84.
Clares, B., et al., Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: effect on skin permeation. Int J Pharm, 2014. 473(1-2): p. 591-8.
Lin, C.-H., et al., Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Journal of Food and Drug Analysis, 2017. 25(2): p. 219-234.
Severino, P., et al., Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces, 2011. 86(1): p. 125-30.
Becker Peres, L., et al., Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B Biointerfaces, 2016. 140: p. 317-23.
Bonina, C.P.F., Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. 2012.
Zielińska, A. and I. Nowak, Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. 2016: p. 231-255.
Doktorovova, S., et al., Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm, 2016. 108: p. 235-252.
Keck, C.M., et al., Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. Int J Pharm, 2014. 474(1-2): p. 33-41.
Chemical Identity - GPS safety summary - BASF.com.
plantacare® 810 up - Cospha.
Kovacevic, A., et al., Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm, 2011. 406(1-2): p. 163-72.
Kovačević, A.B., et al., Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 444: p. 15-25.
Budai, L., et al., Liposomes for topical use: a physico-chemical comparison of vesicles prepared from egg or soy lecithin. Sci Pharm, 2013. 81(4): p. 1151-66.
Oke, M., J.K. Jacob, and G. Paliyath, Effect of soy lecithin in enhancing fruit juice/sauce quality. Food Research International, 2010. 43(1): p. 232-240.
Bruge, F., et al., A comparative study on the possible cytotoxic effects of different nanostructured lipid carrier (NLC) compositions in human dermal fibroblasts. Int J Pharm, 2015. 495(2): p. 879-85.
Koneva, A.S., et al., Effect of water content on structural and phase behavior of water-in-oil (n-decane) microemulsion system stabilized by mixed nonionic surfactants SPAN 80/TWEEN 80. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 518: p. 273-282.
Liu, S., et al., Preparation and characterization of organo-vermiculite based on phosphatidylcholine and adsorption of two typical antibiotics. Applied Clay Science, 2017. 137: p. 160-167.
Garg, T., Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif Cells Nanomed Biotechnol, 2016. 44(1): p. 98-105.
Jeon, H.S., et al., A retinyl palmitate-loaded solid lipid nanoparticle system: effect of surface modification with dicetyl phosphate on skin permeation in vitro and anti-wrinkle effect in vivo. Int J Pharm, 2013. 452(1-2): p. 311-20.
Wang, S.Q., S.W. Dusza, and H.W. Lim, Safety of retinyl palmitate in sunscreens: a critical analysis. J Am Acad Dermatol, 2010. 63(5): p. 903-6.
Damian, D.L., et al., UV radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J Invest Dermatol, 2008. 128(2): p. 447-54.
Lappas, M. and M. Permezel, The anti-inflammatory and antioxidative effects of nicotinamide, a vitamin B(3) derivative, are elicited by FoxO3 in human gestational tissues: implications for preterm birth. J Nutr Biochem, 2011. 22(12): p. 1195-201.
Lee, M.-H., et al., In vivo anti-melanogenesis activity and in vitro skin permeability of niacinamide-loaded flexible liposomes (Bounsphere™). Journal of Drug Delivery Science and Technology, 2016. 31: p. 147-152.
Lin, Y.-S., et al., Effects of nicotinic acid derivatives on tyrosinase inhibitory and antioxidant activities. Food Chemistry, 2012. 132(4): p. 2074-2080.
Escudero-Góngora, M.M. and P. Fernández-Peñas, Nicotinamide: New Indications in Dermatology. Actas Dermo-Sifiliográficas (English Edition), 2016. 107(9): p. 777-778.
Ibrahim, F., et al., An ecofriendly green liquid chromatographic method for simultaneous determination of nicotinamide and clindamycin phosphate in pharmaceutical gel for acne treatment. Journal of Food and Drug Analysis, 2016.
Xia, Q., et al., UVA photoirradiation of retinyl palmitate--formation of singlet oxygen and superoxide, and their role in induction of lipid peroxidation. Toxicol Lett, 2006. 163(1): p. 30-43.
Iqbal, M., et al., Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm, 2015. 496(2): p. 173-90.
Zafeiri, I., et al., The role of surface active species in the fabrication and functionality of edible solid lipid particles. J Colloid Interface Sci, 2017. 500: p. 228-240.
Martins, S., et al., Physicochemical properties of lipid nanoparticles: effect of lipid and surfactant composition. Drug Dev Ind Pharm, 2011. 37(7): p. 815-24.
William H. Tolleson, S.-H.C., Qingsu Xia, Mary Boudreau, Jun Jie Yin, Wayne G. Wamer, Paul C. Howard, Hongtao Yu, and Peter P. Fu, Photodecomposition and Phototoxicity of Natural Retinoids. International Journal of Environmental Research and Public Health, 2005. 2(1): p. 147-155.
Hiroshi IHARA, N.H., Nobuko HIRASE and Ryokuero SUZUE, Esterification Makes Retinol More Labile to Photolysis. Journal of Nutritional Science and Vitaminology, 1999. 45: p. 353-358.

第一頁 上一頁 下一頁 最後一頁 top