跳到主要內容

臺灣博碩士論文加值系統

(44.210.149.205) 您好!臺灣時間:2024/04/12 22:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭靜憶
研究生(外文):KUO, CHING-YI
論文名稱:利用SAMP-8老化促進小鼠探討乳酸菌對老化引起免疫衰退的影響
論文名稱(外文):Study of Lactic Acid Bacteria on Aging Induced Immunosenescence by Using SAMP-8 Mice
指導教授:黃惠宇黃惠宇引用關係
指導教授(外文):HUANG, HUI-YU
口試委員:王錫崗蔡英傑王銘富張美鈴
口試委員(外文):WANG, SHYI-GANGTSAI, YING-CHIEHWANG, MING-FUCHANG, MEI-LING
口試日期:2017-07-21
學位類別:碩士
校院名稱:實踐大學
系所名稱:食品營養與保健生技學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:乳酸菌老化促進鼠免疫衰退
外文關鍵詞:Lactic acid bacteriaSenescence-accelerated Mouse (SAM)Immunosenescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
目前已知益生菌會增強宿主的免疫反應,但至今仍未確定其在調節免疫衰老及老化過程中所扮演的角色。本研究目的探討補充乳酸菌是否能改善SAMP-8老化促進鼠之免疫衰退能力。本實驗將56隻十六週齡大的SAMP-8小鼠,隨機進行分組,分為:未老化組 (Non-aging) 、老化控制組 (Aging C) 、LAB 1倍劑量組 (LAB 1X;108 CFU/day) 及LAB 10倍劑量組 (LAB 10X;109 CFU/day) 。研究一,利用16週齡SAMP-8老鼠分別以老化外觀評估、行為試驗及腸道滲透度試驗,犧牲後採集血液、腸液及脾臟,進行後續之發炎及免疫球蛋白等免疫分析等確定是否適合老化誘導免疫衰退動物模式之建立。研究二,利用16週齡SAMP-8老鼠連續餵菌12週後進行老化外觀評估、行為試驗及腸道滲透度試驗,犧牲後採集血液、腸液及脾臟,並檢測補充乳酸菌後是否具有改善老化之免疫功能的潛力。研究一結果,老化組之吞噬細胞能力較低而體內發炎反應顯著高於未老化組別,在免疫球蛋白及T細胞群檢測,老化組免疫功能有下降趨勢,另外,在腸道檢測分析,老化組之腸道屏障功能及長度均低於未老化組,且具有較嚴重的發炎現象及在免疫球蛋白有下降之趨勢,在情緒評估方面,老化組別亦會出現抑鬱的情況;綜合以上結果顯示SAMP-8老鼠可作為免疫衰退之動物模式。研究二結果,給予乳酸菌的補充後,對於老化之外觀具有改善,在免疫力方面提升吞噬細胞之吞噬能力,降低發炎反應,提升免疫的保護作用,然而,在腸道功能中,補充乳酸菌可以提升腸道屏障功能進而減少腸道萎縮及降低腸道發炎反應,對於腸道免疫也提升保護作用,也可改善老化所引起之情緒障礙。因此長期補充乳酸菌應有改善SAMP-8小鼠老化之免疫衰退,且其與腸道功能及腦部功能改善具正相關。
Although probiotics are known to enhance the host immune response, their roles in modulating immunosenescence during aging remain unclear. The present study aimed at determining the influence of lactic acid bacteria (LAB) on immunosenescence in SAMP-8 mice. The fifty-six 16 weeks old SAMP-8 mice divided into four groups: comparison group (Non-aging), control group (Aging C), LAB 1X group (108 CFU/day/per mice) and LAB 10X group (109 CFU/day/per mice). For the first study, 16 weeks old mice were analysed with aging appearance evaluation, behavior test and intestinal permeability test. After sacrificied, we collected brain, blood, intestinal fluid and spleen for immune analysis to determining whether SAMP-8 mice could be animal model of immunosenescence. For the secend study, animals were administered LAB for twelve weeks. And then, animals were analysed with aging appearance evaluation, behavior test and intestinal permeability test. After sacrificied, we collected brain, blood, intestinal fluid and spleen for immune analysis to determining whether LAB has the potential to improve immunosenescence. The results of first study showed that phagocytosis and immune response of aging C group were significantly decreased as compared to non-aging group. Serum and gut inflammatory cytokines were increased in aging C group. Intestinal barrier function and gut length were lowered in aging C group. Aging C group was appeared depression. Based on our previous studies that SAMP-8 mice could be animal model of immunosenescence. The results of secend study, appearance evaluation found that feeding LAB has anti-aging in the SAMP-8 mice. In immunity, feeding LAB enhanced phagocytosis and immune response, decreased inflammatory cytokines. LAB supplementation could increase intestinal barrier function, gut length and gut immune response, reduced gut inflammatory cytokines. In addition, feed the bacteria could improve mood disorder. Based on above results, long term lactic acid bacteria supplementation improves the immunosenescence in SAMP-8 mice and it is positively correlated with intestinal function and brain function improvement.
目錄
第一章、 緒論 1
壹、全球老化人口比率 1
貳、老化衍生之生理衰退現象 1
參、免疫衰退 2
肆、免疫與腸道 2
伍、免疫與腦部情緒表現 3
陸、乳酸菌與免疫 4
柒、老化促進鼠 (senescence-accelerated mouse, SAM) 5
捌、研究動機與目的 7
第二章、實驗材料與方法 9
壹、實驗架構 9
貳、實驗材料 10
一、 乳酸菌之製備 11
二、 實驗動物 11
三、 實驗試劑 11
四、 實驗藥品 12
五、 儀器設備 12
參、實驗方法 13
一、 乳酸菌之製備 13
二、 實驗動物來源及飼養 13
三、 SAMP-8小鼠老化模式之建立 13
四、 生理外觀評估 14
五、 行為試驗 16
六、 吞噬細胞活性試驗 16
七、 腸道滲透度試驗 17
八、 血液採集 17
九、 腦組織取樣 17
十、 脾臟細胞免疫分析 17
十一、 測量腸道長度 19
十二、 腸液收集 19
十三、 血清及脾臟細胞中發炎性細胞激素分析 19
十四、 血清及腸道中免疫球蛋白表現分析 19
十五、 神經傳導物質多巴胺和血清素及其代謝物測量 20
十六、 統計分析 20
第三章、實驗結果 21
壹、老化動物模式之確立 21
一、老化之生理外觀評估 21
二、免疫衰退現象 21
三、免疫與腸道 23
四、情緒評估 24
貳、補充乳酸菌連續12週對SAMP8老化促進鼠之影響 25
一、老化之生理外觀評估 25
二、免疫衰退現象 25
三、免疫與腸道 27
四、情緒評估 28
第四章、討論 30
一、SAMP-8小鼠可作為老化引起免疫衰退之動物模式 30
二、乳酸菌可以延緩老化引起之免疫衰退 32
三、乳酸菌具有改善腸道及腦部功能之作用 33
第五章、結論 34
參考文獻 35

Aoki, K., Asano, K., Okamoto, K. I., Yoshida, T., Kuroiwa, Y. (1995). Age-related changes in ConA-induced cytokine production by splenocytes from senescence accelerated mice SAMP8. Immunology letters 46(1-2), 169-175.
Biagi, E., Candela, M., Turroni, S., Garagnani, P., Franceschi, C., Brigidi, P. (2013). Ageing and gut microbes: perspectives for health maintenance and longevity. Pharmacological Research 69(1), 11-20.
Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., et al. (2014). Intestinal permeability–a new target for disease prevention and therapy. BMC gastroenterolog 14(1), 189.
Brydon, L., Walker, C., Wawrzyniak, A. J., Chart, H., Steptoe, A. (2009). Dispositional optimism and stress-induced changes in immunity and negative mood. Brain, behavior, and immunity 23(6), 810-816.
Brydon, L., Walker, C., Wawrzyniak, A., Whitehead, D., Okamura, H., Yajima, J., et al. (2009). Synergistic effects of psychological and immune stressors on inflammatory cytokine and sickness responses in humans. Brain, behavior, and immunity 23(2), 217-224.
Butterfield, D. A., Poon, H. F. (2005). The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer's disease. Experimental gerontology 40(10), 774-783.
Canani, R. B., Costanzo, M. D. (2012). Probiotics in gastroenterology. International Journal of Clinical Reviews.
Caricilli, A. M., Castoldi, A., Câmara, N. O. S. (2014). Intestinal barrier: a gentlemen’s agreement between microbiota and immunity. World journal of gastrointestinal pathophysiology 5(1), 18.
Castle, S. C. (2000). Clinical relevance of age-related immune dysfunction. Clinical Infectious Diseases 31(2), 578-585.
Ciprandi, G., Comite, P., Ferrero, F., Fontana, V., Bruzzone, M., Mussap, M. (2016). Serum allergen-specific IgE, allergic rhinitis severity, and age. Rhinology 54(3), 231-238.


Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., Vancassel, S., Cardona, A., Daugé, V., et al. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42, 207-217.
Deleidi, M., Jäggle, M., Rubino, G. (2015). Immune aging, dysmetabolism, and inflammation in neurological diseases. Frontiers in neuroscience 9.
Dinan, T. G., Cryan, J. F. (2012). Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37(9), 1369-1378.
Foster, A. D., Sivarapatna, A., Gress, R. E. (2011). The aging immune system and its relationship with cancer. Aging health 7(5), 707-718.
Fukatsu, K., Kudsk, K. A. (2011). Nutrition and gut immunity. Surgical Clinics of North America 91(4), 755-770.
Gruver, A. L., Hudson, L. L., Sempowski, G. D. (2007). Immunosenescence of ageing. The Journal of pathology 211(2), 144-156.
Hawkley, L. C., Cacioppo, J. T. (2004). Stress and the aging immune system. Brain, behavior, and immunity 18(2), 114-119.
Hosokawa, M. (2002). A higher oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP strains of mice. Mechanisms of ageing and development 123(12), 1553-1561.
Kayama, H., Takeda, K. (2015). Functions of innate immune cells and commensal bacteria in gut homeostasis. The Journal of Biochemistry 159(2), 141-149.
Moro-García, M. A., Alonso-Arias, R., Baltadjieva, M., Benítez, C. F., Barrial, M. A. F., Ruisánchez, E. D., et al. (2013). Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age 35(4), 1311-1326.
Nova, E., Wärnberg, J., Gómez-Martínez, S., Díaz, L. E., Romeo, J., Marcos, A. (2007). Immunomodulatory effects of probiotics in different stages of life. British Journal of Nutrition 98(S1), S90-S95.
Olivares, M., Díaz-Ropero, M. P., Gómez, N., Lara-Villoslada, F., Sierra, S., Maldonado, J. A., et al. (2006). The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. International microbiology 9(1), 47-52.
Pallàs, M. (2012). Senescence-Accelerated Mice P8: a tool to study brain aging and Alzheimer's disease in a mouse model. ISRN Cell Biology 2012.
Parra, M. D., Martinez de Morentin, B. E., Cobo, J. M., Mateos, A., Martinez, J. A. (2004). Daily ingestion of fermented milk containing Lactobacillus casei DN114001 improves innate defense capacity in healthy middle-aged people. Journal of physiology and biochemistry 60(2), 85-91.
Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., Theoharides, T. C. (2015). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical therapeutics 37(5), 984-995.
Postolache, T. T., Lapidus, M., Sander, E. R., Langenberg, P., Hamilton, R. G., Soriano, J. J., et al. (2007). Changes in allergy symptoms and depression scores are positively correlated in patients with recurrent mood disorders exposed to seasonal peaks in aeroallergens. The Scientific World Journal 7, 1968-1977.
Saffrey, M. J. (2014). Aging of the mammalian gastrointestinal tract: a complex organ system. Age 36(3), 9603.
Scaldaferri, F., Gerardi, V., Lopetuso, L. R., Zompo, F. D., Mangiola, F., Boškoski, I., et al. (2013). Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. BioMed research international 2013.
Shao, M. J., Zhu, Y. J., Qiu, Y. E., Hu, M., He, Y. Q. (2017). Changes in the Level of Immunoglobulins and CD4/CD8 Ratio in Young and Aged Mice with Estradiol Deficiency. Immunological Investigations 46(3), 305-313.
Sharma, R., Kapila, R., Dass, G., Kapila, S. (2014). Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age 36(4), 9686.
Sharma, R., Kapila, R., Haq, M. R. U., Salingati, V., Kapasiya, M., Kapila, S. (2014). Age-associated aberrations in mouse cellular and humoral immune responses. Aging clinical and experimental research 26(4), 353-362.
Sharma, R., Kapila, R., Kapasiya, M., Saliganti, V., Dass, G., Kapila, S. (2014). Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutrition Research 34(11), 968-981.
Smith, G. D. (2016). Is there a role for probiotics in older people? British journal of community nursing 21(10), 501-503.
Subramaniapillai, M., Carmona, N. E., Rong, C., McIntyre, R.S. (2017). Inflammation: opportunities for treatment stratification among individuals diagnosed with mood disorders. Dialogues in clinical neuroscience 19(1), 27.
Sultana, R., Cenini, G., Butterfield, D. A. (2012). SAMP8: A model to understand the role of oxidative stress in age-related diseases including Alzheimer’s disease.
Takeda, T., Hosokawa, M., Higuchi, K. (1991). Senescence‐Accelerated Mouse (SAM): A Novel Murine Model of Accelerated Senescence. Journal of the American Geriatrics Society 39(9), 911-919.
Takeda, T., Hosokawa, M., Higuchi, K. (1997). Senescence-accelerated mouse (SAM): a novel murine model of senescence. Experimental gerontology 32(1), 105-109.
Takeda, T., Hosokawa, M., Takeshita, S., Irino, M., Higuchi, K., Matsushita, T., et al. (1981). A new murine model of accelerated senescence. Mechanisms of ageing and development 17(2), 183-194.
Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., et al. (2017). Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host & Microbe 21(4), 455-466. e454.
Valdiglesias, V., Sánchez-Flores, M., Maseda, A., Lorenzo-López, L., Marcos-Pérez, D., López-Cortón, A., et al. (2017). Immune biomarkers in older adults: Role of physical activity. Journal of Toxicology and Environmental Health, Part A 1-16.
Vancamelbeke, M., Vermeire, S. (2017). The intestinal barrier: a fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology 1-14.
Wang, H. X., Wang, Y. P. (2016). Gut microbiota-brain axis. Chinese medical journal 129(19), 2373.
Wang, J., Yang, G., Wang, D., Liu, K., Ma, Y., Liu, H., et al. (2017). Changes of peripheral lymphocyte subsets and cytokine environment during ageing and deteriorating gastrointestinal tract health status. Oncotarget.
Woods, J. A., Wilund, K. R., Martin, S. A., Kistler, B. M. (2012). Exercise, inflammation and aging. Aging and disease 3(1), 130.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top