余佳倩 (2015),“以台灣金融業股票探討流動性風險與資產定價之關係” 碩士論文,台中:國立中興大學財務金融研究所。周群哲 (2016),“全球股市流動性之關連性分析” 碩士論文,桃園:國立中央大學經濟學研究所。蘇怡仁,李哲均,張傳旺,李俊德 (2015),”以超圖分割法實現社群發現之研究” 第十四屆離島資訊技術與應用研討會,澎湖:國立澎湖科技大學資訊工程系。
Amihud, Y., (2002). Illiquidity and stock returns: cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56.
Amr, T. and R. Stamboliyska, (2016). Practical D3.js: Master the Use of D3.js in the Real World. Apress, New York.
Bedi, P. and C. Sharma, (2016). Community detection in social networks. WIREs Data Mining and Knowledge Discovery, 6(3), 115-135.
Beeley, C., (2016). Web Application Development with R Using Shiny. Second Edition. Packt Publishing, UK.
Davey, B.A. and J. Pitkethly, (2013). Google pagerank. Australian Mathematical Sciences Institute, Australia.
Dickey, D.A. and W.A. Fuller, (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431.
Engle, R.F. and C.W.J. Granger, (1987). Cointegration and error correction, estimation, and testing. Econometrica, 55(2), 251-276.
Florackis, C., A. Gregoriou and A. Kostakis (2011). Trading frequency and asset pricing on the London Stock Exchange: evidence from a new price impact ratio. Journal of Banking & Finance, 35(2), 3335-3350.
Granger, C.W.J. and P. Newbold, (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111-120.
Guller, M., (2016). Big Data Analytics with Spark: A Practitioner’s Guide to Using Spark for Large Scale Data Analysis. Apress, New York.
Iteydt, M., (2015). D3.js by Example: Create Attractive Web-Based Data Visualizations Using the Amazing Javascript Library D3.js. Packt Publishing, UK.
Lancichinetti, A. and S. Fortunato, (2009). Community detection algorithms: A comparative analysis. Physical Review E, 80(5), 056117. Erratum: Physical Review E, 89(4), 049902 (2014).
LazyProgrammer, (2016). Big Data, MapReduce, Hadoop, and Spark with Python. http://lazyprogrammer.me.
Liu, B. and P.S. Yu, (2009). PageRank. In The Top Ten Algorithms in Data Mining. Edited by X. Wu and V. Kumar, 117-125. CRC Press, New York.
Meeks, E., (2015). D3.js in Action. Manning Publications Co., New York.
Murray, S., (2013). Interactive Data Visualization for the Web. O’Reilly Media, Inc., Beijing.
Nelson, C. and C. Plosser (1982). Trends and random walks in macroeconomic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139-162.
Newman, M.E.J. and M. Girvan, (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.
Page, L., S. Brin, R. Motwani, and T. Winograd, (1998). The PageRank citation ranking: bringing order to the web. Proceedings of the 7th International World Wide Web Conference, 161-172. Brisbane, Australia.
Raghavan, U.N., R. Albert, and S. Kumara, (2007). Near linear time algorithm to detect community structures in large-scale network. Physical Review E, 76(3), 036106.
Resnizky, H.G., (2015). Learning Shiny. Packt Publishing, UK.
Said, S.E. and D.A. Dickey, (1984). Test for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.
Sankar, K., (2016). Fast Data Processing with Spark 2. Third Edition. Packet Publishing, UK.
Traag, V., (2014). Algorithms and Dynamical Models for Communities and Reputation in Social Networks. Springer International Publishing AG, Switzerland.
Tsvetovat, M. and A. Kouznetsov, (2011). Social Network Analysis for Startups. O’Reilly Media, Inc., Beijing.
Zafarani, R., A. Abbasi and H. Liu, (2014). Social Media Mining: An Introduction. Cambridge University Press, UK.