跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李峻昇
研究生(外文):LI, CHUN-SHENG
論文名稱:拉伸對聚對苯二甲酸乙二酯薄膜分子鍊順向性之影響
論文名稱(外文):Effect of Tensile Drawing on the Molecular Orientation in Poly(ethylene terephthalate) Film
指導教授:毛慶豐陳澄河陳澄河引用關係
指導教授(外文):Mao, Ching-FengChen, Cheng-Ho
口試委員:陳炳宏華繼中
口試委員(外文):Chen, Bing-HungHua, Chi-Chung
口試日期:2017-06-26
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:96
中文關鍵詞:聚對苯二甲酸乙酯順向性雙折射單軸拉伸雙軸拉伸
外文關鍵詞:Poly(ethylene terephthalate)OrientationBirefringenceUniaxial StretchingBiaxial Stretching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚對苯二甲酸乙二酯(PET)薄膜中分子鏈順向性(Molecular Orientation)為薄膜拉伸過程中影響薄膜性質的重要因素,對最終薄膜結晶度、透明度、氧氣滲透率及機械強度有決定性的影響。本研究利用拉力試驗機建立實驗級拉伸裝置探討PET薄膜在不同加工條件下(包含拉伸比、拉伸速率、單軸拉伸及連續式雙軸拉伸)對薄膜性質的影響。首先確立單軸拉伸及雙軸拉伸實驗中,可藉由拉伸時間製備不同拉伸比之PET薄膜。
順向性為薄膜重要性質,可藉由拉伸過程中不同加工條件進行控制,並透過雙折射(Birefringence)作為量測指標。雙折射為偏光在樣品因縱向及橫向順向性程度差異造成之折射率差(n),此性質可藉由Senarmont方法量測。本研究自製Senarmont雙折射量測裝置,使用雷射、偏光鏡、1/4波片、檢光鏡、光偵檢器等光學元件。首先在設備校正後,對Scotch tape進行量測,發現雙折射值與文獻值相同,證明雙折射量測系統具可信度及準確性。
拉伸樣品性質量測結果顯示,單軸拉伸樣品之結晶度與雙折射,皆隨著拉伸比及拉伸速率增加而增加,表示拉伸應力可增加分子鏈順向性,並伴隨著誘導結晶發生。連續式雙軸拉伸樣品,由於MD拉伸後結晶度已達極限值,因此TD拉伸後結晶度皆無明顯差異;而雙折射隨著TD方向拉伸比增加而接近於0,此時MD與TD順向性程度相似,故兩方向折射率相似。樣品熱分析發現單軸拉伸樣品,因順向性之提高及誘導結晶之存在,使得Tg點隨著拉伸比增加而增加,Th,c降低及較平緩。連續式雙軸拉伸樣品,因結晶度已達極限值,使得熱性質並不隨TD拉伸比發生明顯變化。

The characteristic properties of poly(ethylene terephthalate) (PET) films, such as mechanical properties, crystallinity, oxygen permeability and transparency, are determined by the orientation of PET molecules, which can be manipulated by the processing conditions. In this study the effects of processing conditions, including draw ratios, draw rates, types of stretching (uniaxial or sequential biaxial stretching) on properties of PET films were investigated using a homemade stretching device modified from a commercial tensile testing machine. The validity of the device was evaluated and confirmed by reproducibility of test, and then different draw ratios of PET films were prepared by changing the operating time.
The molecular orientation in PET films can be quantified and measured in terms of birefringence (n), which can be determined by the difference in refraction index between the fast axis and slow axis of a sample when using a polarized light source. In this study the Senarmont device consisting of a He-Ne laser (632.8 nm), a set of polarizer-quarter wave plate-analyzer, and a detector was used to measure n. The device was first calibrated and confirmed by a Scotch tape measurement. The excellent agreement between the literature data and the measured value validates the reliability and accuracy of the device.
The stretching results showed that the birefringence and crystallinity of PET films obtained from the uniaxial stretching increased with increasing draw ratio and draw rate due to the induced crystallization. Similarly, the Tg values increased with increasing draw ratio, and the Th,c values shifted to lower temperature due to the presence of induced crystallization. In contrast, the crystallinity of PET films obtained from the sequential biaxial stretching remained unchanged, which was explained by the fact that the crystallinity reached a maximum value after the MD (machine direction) stretching, thus no further increase in crystallinity could be obtained from the TD (transverse direction) stretching. The birefringence, on the other hand, decreased with increasing draw ratio of TD and became almost null when MD and TD were identical.

摘要...I
Abstract.......II
致謝...IV
目次...V
表目錄...VII
圖目錄...VIII
第一章 前言.....1
1.1 背景.......1
1.2 研究目的....2
第二章 文獻回顧...3
2.1 PET聚酯薄膜...3
2.2 薄膜加工技術...4
2.2.1 流延成型...4
2.2.2 雙軸拉伸...5
2.2.3 吹膜成型...8
2.2.4 二次吹膜成型......9
2.3 聚酯拉伸膜性質......10
2.3.1 結晶度.....11
2.3.2 結晶型態....16
2.3.3 分子鏈順向性......18
2.3.4 機械性質...24
2.3.5 氧氣滲透率...31
2.3.6 透明度....34
2.4 雙折射原理與量測....36
2.4.1 偏光原理...38
2.4.2 偏光種類...40
2.4.3 光學元件...44
2.4.4 光偵檢器...51
2.4.5 Jones向量&矩陣表示法.....52
2.5雙折射量測方法.....54
2.5.1 Senarmont方法....54
2.5.2 Berek補償器....55
2.5.3 ABBE折射儀...56
第三章 實驗方法與設備....59
3.1 實驗樣品....59
3.2 實驗儀器....59
3.3 實驗方法....60
3.3.1 不同拉伸條件PET薄膜製備....61
3.3.2 光源校正....65
3.3.3 1/4波片校正.....65
3.3.4 Senarmont裝置校正...66
3.3.5 雙折射量測...67
3.3.6 結晶度量測...67
第四章 結果與討論.....68
4.1 PET薄膜拉伸樣品製備....68
4.1.1單軸拉伸....69
4.1.2連續式雙軸拉伸.....72
4.2 光學裝置Jones向量及矩陣運算分析.....74
4.2.1 Senarmont裝置Jones向量及矩陣運算分析.....75
4.2.2 1/4波片校正裝置Jones向量及矩陣運算分析.....76
4.3 光強度檢量線製作.....77
4.4 Senarmont方法系統校正.....78
4.4.1 1/4波片校正.....78
4.4.2 雙折射裝置校正.....79
4.4.3 雙折射標準品量測....80
4.5 拉伸對PET薄膜之雙折射性質之影響.....81
4.6 熱性質分析....84
第五章 結論....92
參考文獻...94


[1] 楊始堃,聚酯非纖應用工藝與技術,機械工業出版社 (2009)
[2] M. T. DeMeuse, Biaxual Stretching of Flm, Woodhead Publishing Limited (2011)
[3] E. M. Abdel-Bary, Hankbook of Plastic Films, Rapra Technology Limited (2003)
[4] T. Kanai, G. A. Campbell, Film Processing, Hanser Publishers (1999)
[5] T. Kanai, G. A. Campbell, Film Processing Advance, Hanser Publishers (2014)
[6] T. M. Aminabhavi, R. H. Balundgi, P. E. Cassidy, A Review on Biodegradable
Plastics, Polymer-Plastics Technology and Engineering, (1990) 235-262
[7] 趙耀明,非纖維用熱塑性聚酯工藝與應用,化學工業出版社 (2002)
[8] 邱茂源,龔丹誠,工業材料雜誌,Vol. 324 (2013) 86-93
[9] A. B. Thompson, Journal of Polymer Science, Vol. 34 (1959) 741-760
[10] T. Kawaguchi, Journal of Polymer Science, Vol. 5 (1961) 482-490
[11] A. Misra, R. S. Stein, Journal of Polymer Science: Polymer Physics Edition, Vol. 17 (1979) 235-257
[12] S. A. Jabarin, Polymer Engineering and Science, Vol. 32 (1992) 1341-1349
[13] A. Zumailan, E. Dargent, J. M. Saiter, Polymer Engineering and Science, Vol. 44 (2004) 223-230
[14] D. S. Ryu, T. Inoue, K. Osaki, Polymer, Vol. 39 (1998) 2515-2520
[15] X. F. Lu, J. N. Hay, Polymer, Voi. 42 (2001) 8055-8067
[16] D. R. Salem, Polymer, Vol. 35 (1994) 771-776
[17] A. Ajji, J. Guevremont, K. C. Cole, M. M. Dumoulin, Polymer, Vol. 37 (1996) 3707-3714
[18] Q. Zhang, R. Zhang, L. Meng, Y. Lin, X. Chen, X. Li, W. Zhang, L. Li, Polymer, Vol. 101 (2016) 15-23
[19] X. Ou, M. Cakmak, Polymer, Vol. 51 (2010) 783-792
Wenhua Zhang, Liangbin Li*
[20] 胡煌騏,聚對苯二甲酸乙酯與其相關材料之結晶性與熱性質,南台科技大學 (2014) .
[21] R. G. Matthews, Ajji, M. M. Dumoulin, R. E. Prudhomme, Polymer, Vol. 41 (2000) 7139-7145
[22] M. K. Hassan, M. Cakmak, Polymer, Vol. 55 (2014) 5245-5254
[23] T Nakajima, Advanced Fiber Spinning Technology, Woodhead Publishing Limited (2009)
[24] C. J. Heffelfinger, P. G. Schmidt, Applied Polymer, Vol. 9 (1965) 2661-2680
[25] N. Qureshi, E. V. Stepanov, D. Schiraldi, A. Hiltner, E. Baer, Journal of Polymer Science: Part B: Polymer Physics, Vol. 38 (2000) 1679-166
[26] A. A. Natu, E. A. Lofgren, S. A. Jabarin, Polymer Engineering and Science, Vol. 45 (2005) 400-409
[27] S. A. Jabarin, Polymer Engineering and Science, Vol. 22 (1982) 815-820
[28] D. B. Murphy, M. W. Davidson, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Blackwell (2013)
[29] SchoolPhysics, Double Refraction, http://www.schoolphysics.co.uk/age16-19/Wave%20properties/Polarisation/text/Double_refraction/index.html
[30] T. Yoshizawa, Handbook of Optical Metrology : Principles and Applications, CRC Press (2008)
[31] CCS光學科學株式會社,光的電磁波,http://www.ccs-inc.co.jp/s2_ps/s1/s_04/column/light_color/vol02.html
[32] Optical fiber sensors, Elliptical Polarization, http://www.optique-ingenieur.org/en/courses/OPI_ang_M06_C04/co/Contenu_13.html
[33] Wikipedia, Laser, https://zh.wikipedia.org/wiki/%E6%BF%80%E5%85%89
[34] THORLABS, Glan-Thompson Polarizers, https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=116
[35] OptoSigma, Polarizers, https://www.global-optosigma.com/en_us/Catalogs/pno/?from=page&pnoname=SPF%2FNSPFU%2FSPFN&ccode=W3037&dcode=
[36] Quarter Wave Plate, http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/quarwv.html
[37] EdmundOptics, Quarter Wave Plate, https://www.edmundoptics.com/resources/application-notes/optics/understanding-waveplates/
[38] IDEX, Zero Quarter Wave Plate, http://web2.marketplace.idexop.com/
[39] N. N. Nagib, M. S. Bahrawi, L. Z. Ismail, M. H. Othman, A. W. Abdallah, Optics &LaserTechnology, Vol. 69 (2015) 77–79
[40] P. Daveze, H Sahsah, J. Monin, Measurement Science and Technology, Vol. 7 (1996) 157-161
[41] D. Clarke, J. F. Grainger, Polarized Light of Optical Measurement, Pergamon Press (1971)
[42] P. Kurzynowski, W. A. Wozniak, Optik - International Journal for Light and Electron Optics, Vol. 113 (2002) 51-53
[43] N. N. Nagib, Applied Optics, Vol. 39 (2000) 2078-2080
[44] A. Gerrard, J. M. Burch, Introduction to Matrix Methods in Optics, Dover Publications (1975)
[45] F. L. Pedrotti, L. M. Pedrotti, L. S. Pedrotti, Introduction to Optics, Pearson (2007)
[46] R. Caputo, I. Trebisacce, L. D. Sio, C. Umeton, Optics Express, Vol. 18 (2010) 5776-5784
[47] A. Mori, R. Tomita, Instrumentation Science & Technology, Vol. 43 (2015) 379-389
[48] Microscopy, Berek compensator, http://www.olympusmicro.com/primer/techniques/polarized/berekcompensator.html
[49] Refractometer, Abbe refractometer, http://www.refractometer.pl/Abbe-refractometer
[50] A. Belendez, E. Fernandez, J. Frances, C. Neipp, European Journal of Physics, Vol. 31 (2010) 551-561
[51] G. L. Bourvellec, J. Beautemps, Applied Polymer, Vol. 39 (1990) 329-339
[52] 王宏育,分散性染料在聚對苯二甲酸乙酯紡織品之染色研究,南台科技大學 (2016)

電子全文 電子全文(網際網路公開日期:20220628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top