跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:石紫瑤
研究生(外文):SHIH, TZU-YAO
論文名稱:側鏈含二胺基-N-甲基二丙基胺之螯合樹脂吸附重 金屬離子之研究
論文名稱(外文):Adsorption of Heavy Metal Ions from Aqueous Solutions By a Novel Chelating Resin Carrying 3,3′-Diamino-N- Ethyldipropylamine
指導教授:陳志彥陳志彥引用關係江禎立
指導教授(外文):CHEN, CHUH-YEANCHIANG, CHEN‐LI
口試委員:李玉郎陳東煌陳志彥江禎立
口試委員(外文):LEE, YUH-LANGCHEN, DONG-HWANGCHEN, CHUH-YEANCHIANG, CHEN‐LI
口試日期:2017-06-29
學位類別:碩士
校院名稱:南臺科技大學
系所名稱:化學工程與材枓工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:懸浮聚合螯合樹脂3,3’-二胺基-N-甲基二丙基胺吸附重金屬離子
外文關鍵詞:suspension polymerizationchelating resin3,3’-Diamino-N-methyldipropylamineadsorptionheavy metal ion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究先利用懸浮聚合法製備顆粒狀的交聯聚縮水甘油甲基丙烯酸酯 (簡稱cPGMA),再利用3,3’-二胺基-N-甲基二丙基胺反應cPGMA 而得到側鏈含3,3’-二胺基-N-甲基二丙基胺的螯合樹脂(簡稱PGN3)。由傅立葉轉換紅外線光譜儀(FT-IR)與能量分散光譜儀(EDS)的鑑定證實PGN3 的製備是成功的,而掃描式電子顯微鏡(SEM)的觀察得知PGN3 是粒徑200~300 μm、表面具孔洞的不規則顆粒。當PGN3吸附單一的Cu2+、Cd2+ 與Ag+ 時,大約在10 或20 分可達到Ag+ 為2.80、Cu2+ 為
2.65、Cd2+ 為1.22 mmol/(g PGN3)的最大吸附容量。而隨著金屬離子初濃度的上升,PGN3 的吸附量亦明顯增加並在某一高濃度以上達最大值,其吸附行為符合Langmuir 等溫吸附模式。當Cd2+ 與Ag+ 溶液的pH 值大於4 時,PGN3 的吸附容量均可維持在最高值,而pH 4 降到3 時才出現些微的下降;但Cu2+ 溶液的pH 值從5 降到3 時,PGN3 的吸附容量卻是緩慢降低;而pH < 3 時,PGN3 對此三種金屬離子的吸附容量都隨著pH 值的降低而快速下降且在pH 1.0 時接近失去吸附金屬離子的能力。在競爭吸附方面,調整混合液為pH 2 時,PGN3 可分別自Cu2+/Cd2+
與Ag+/Cd2+ 混合液中吸附到純Cu2+ 或Ag+。以0.5 M 的HNO3 水溶液對已吸附金屬離子的PGN3-金屬離子錯合物進行5 次連續脫附/再吸附實驗後,確定PGN3 對Cu2+、Cd2+ 與Ag+ 的吸附容量都可維持在最高值的95%以上。所以本研究認為PGN3 是一個成本不高但效能佳的螯合樹脂。
關鍵字:懸浮聚合;螯合樹脂;3,3’-二胺基-N-甲基二丙基胺;吸附;重金屬離子
Abstract
A crosslinked poly (glycidyl methacrylate) (cPGMA) was prepared via a
suspension polymerization. Then a chelating resin, PGN3, was synthesized by a reaction of cPGMA with 3,3’-Diamino-N-methyldipropylamine for removing Cu2+, Cd2+ and Ag+ from aqueous solutions. The analyses of Fourier transform infrared spectroscopy and Energy Dispersive X-ray Spectrometer confirmed that PGN3 was synthesized successfully. The diameter of PGN3 observed by scanning electron microscope was found to be 200-300 μm. The adsorption of single-metal ion tended toward equilibrium at 10 or 20 min and the equilibrium adsorption capacities were Ag+ [2.80 mmol/(g PGN3)] > Cu2+ [2.65 mmol(/g PGN3)] > Cd2+ [1.22 mmol/(g PGN3)]. The adsorption isotherms of these three metal ions by PGN3 followed the Langmuir isotherm. For Cd2+ and Ag+, when the pH of the solutions were greater than 4, the adsorption capacities retained the maximum values. As the pH of the solutions decreased from 4 to 3, the adsorption capacity decreased slightly. However, as the pH of Cu2+ solution decreased
from 5 to 3, the adsorption capacity decreased slightly. Furthermore, when the pH of Cu2+, Cd2+ and Ag+ solutions were less than 3, the adsorption capacities decreased dramatically and approached to zero at pH 1. In competitive adsorptions, when the mixtures were pH 2, PGN3 could adsorbed only Cu2+ or Ag+ from Cu2+/Cd2+ or Ag+/Cd2+ mixture, respectively. PGN3 was also a good reusable adsorbent in adsorbing Cu2+, Cd2+ and Ag+ because the re-adsorption capacities could exceed 95% of initial values after 5 cycles of adsorption-desorption operations.
Keywords: suspension polymerization, chelating resin, adsorption,
3,3’-Diamino-N-methyldipropylamine, chelating resin , heavy metal ion
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
附錄目錄 viii
第一章 緒論 1
1-1前言 1
1-2 處理水中重金屬離子的方法 2
1-3 螯合高分子 4
1-3-1 螯合高分子的簡介 4
1-3-2 螯合高分子的分類 5
1-4螯合高分子的合成方式 9
1-5 螯合高分子的應用 10
1-6 吸附理論 13
1-6-1吸附類型 13
1-6-2 影響螯合樹脂吸附金屬離子的因素 14
1-6-3 吸附模式 16
1-6-4 吸附動力 18
1-7 研究動機 19
第二章 實驗內容 21
2-1實驗藥品 21
2-2實驗儀器設備 22
2-3實驗步驟 23
2-3-1螯合高分子的合成 23
2-3-2螯合樹脂(PGN3)的鑑定 24
2-3-3 PGN3吸附單一金屬離子之研究 26
2-3-4連續脫附/再吸附之研究 27
2-3-5競爭吸附 28
第三章 結果與討論 29
3-1螯合樹脂PGN3的合成 29
3-2螯合樹脂PGN3的分析 30
3-2-1傅立葉轉換紅外線光譜儀(FT-IR)分析 30
3-2-2掃描式電子顯微鏡(SEM)對PGN3表面的分析 31
3-2-3能量散射光譜儀(EDS)對吸附金屬離子前後之PGN3的分析 31
3-3 PGN3吸附單一金屬離子之研究 36
3-3-1不同吸附時間對吸附容量的影響 36
3-3-2不同初濃度的金屬離子溶液對吸附容量的影響 41
3-3-3不同pH值的金屬離子溶液對吸附容量的影響 44
3-4連續脫附與再吸附 45
3-5 競爭吸附 48
第四章 結論 52
參考文獻 53


參考文獻
[1]行政院環保署,"安全飲用水手冊",第五版,第78-79頁 (2017)。
[2]F. Fu, Q. Wang, "Removal of heavy metal ions from wastewaters: A review", Journal of Environmental Management, 92, 407-418(2011).
[3]陳志彥,“具側鏈亞胺乙二酸高分子與金屬離子隻螯合性質的探討及其應用”,國立成功大學化學工程系博士論文(2002)。
[4]C.Y. Chen, M.S. Lin, K.R. Hsu, "Recovery of Cu(II) and Cd(II) by a chelating resin containing aspartate groups", Journal of Hazardous Materials, 152, 986-993(2008).
[5]C.Y. Chen, C.L. Chiang, C.R. Chen, "Removal of heavy metal ions by a chelating resin containing glycine as chelating groups", Separation and Purification Technology, 54, 396-403(2007).
[6]Y. Sun, Q. Yue, B. Gao, Y. Gao, X. Xu, Q. Li, Y. Wang, "Adsorption and cosorption of ciprofloxacin and Ni(II) on activated carbon-mechanism study", Journal of the Taiwan Institute of Chemical Engineers, 45(2), 681-688(2014).
[7]G. Li, M. Wang, J. Huang, N. Bao, J. Xue, Q. Liu, L. Huang, " Preparation of activated carbon from Iris tectorum with different ammonium phosphates activation and removal of nickel from aqueous solution", Journal of the Taiwan Institute of Chemical Engineers, 59, 341-347(2016).
[8]S.R. Ryu, E.K. Jeon, J.S. Yang, Kitae Baek "Adsorption of As(III) and As(V) in groundwater by Fe–Mn binary oxide-impregnated granular activated carbon (IMIGAC)", Journal of the Taiwan Institute of Chemical Engineers, 72, 62-69(2017).
[9]K. Wang, J. Zhao, H. Li, X. Zhang, H. Shi, "Removal of cadmium (Ⅱ) from aqueous solution by granular activated carbon supported magnesium hydroxide", Journal of the Taiwan Institute of Chemical Engineers, 61, 287–291( 2016).
[10]Y. Zhao, W. Qi, G. Chen, M. Ji, Z. Zhang, "Behavior of Cr(VI) removal from wastewater by adsorption onto HCl activated Akadama clay", Journal of the Taiwan Institute of Chemical Engineers, 50, 190-197(2015).
[11]F. Ciardelli, E. Tsuchida, D. Wohrle, "Macromolecule-Metal Complexes", Berlin:Springer, 1996.
[12]Q. Liu, Q.Liu, Z.Ruan, X. Chang,J. Yao, "Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles", Ecotoxicology and Environmental Safety, 129, 273-281(2016).
[13]L. Qin, Y. Ge, B. Deng, Z. Li, "Poly (ethylene imine) anchored lignin composite for heavy metals capturing in water", Journal of the Taiwan Institute of Chemical Engineers, 71, 84-90(2017).
[14]C. Liu, R. Bai, "Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd ", Journal of Colloid and Interface Science, 350(1), 282–289(2010).
[15]G. Wang, J. Wang, H. Zhang, F. Zhan, T. Wu, Q. Ren, J. Qiu, "Functional PAN-based monoliths with hierarchical structure for heavy metal removal", Chemical Engineering Journal, 313, 1607-1614(2017).
[16]P. Xiao, D. Han, M. Zhai, L. Xu, H. Li, "Comparison with adsorption of Re (VII) by two different γ-radiation synthesized silica-grafting of vinylimidazole/4-vinylpyridine adsorbents", Journal of Hazardous Materials, 324(B), 711-723(2017).
[17]S. Asayama, M. Sakata, H. Kawakami, "Structure-activity relationship between Zn2+-chelated alkylated poly(1-vinylimidazole) and gene transfection", Journal of Inorganic Biochemistry, 173, 120-125(2017).
[18]L. Cao, Y. Hu, L. Zhang, C. Ma, X. Wang, J. Wang, "Synthesis of cross-linked poly(4-vinylpyridine) and its copolymer microgels using supercritical carbon dioxide: Application in the adsorption of copper(II)", The Journal of Supercritical Fluids, 58, 233-238(2011).
[19]Y.H.F. Al-Qudah, G.A. Mahmoud, M.A. Abdel Khalek, "Radiation crosslinked poly (vinyl alcohol)/acrylic acid copolymer for removal of heavy metal ions from aqueous solutions", Journal of Radiation Research and Applied Sciences, 7, 135-145(2014)。
[20]S. Emik, "Preparation and characterization of an IPN type chelating resin containing amino and carboxyl groups for removal of Cu(II) from aqueous solutions", Reactive and Functional Polymers, 75, 63-74(2014).
[21]L. Li, F. Liu, X. Jing, P. Ling, A. Li, "Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling", Water Research, 45, 1177-1188(2011).
[22]S. Deng, G. Zhang, X. Wang, "Preparation and performance of polyacrylonitrile fiber functionalized with iminodiacetic acid under microwave irradiation for adsorption of Cu(II) and Hg(II)", Chemical Engineering Journal, 276, 349-357(2015).
[23]M.A. Badawi, N.A. Negm, M.T.H.A. Kana,H.H. Hefni, M.M. A. Moneem, "Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism", International Journal of Biological Macromolecules, 99, 465–476(2017).
[24]A.A. Taha, J. Qiao, F. Li, B. Zhang, "Preparation and application of amino functionalized mesoporous nanofiber membrane via electrospinning for adsorption of Cr3+ from aqueous solution", Journal of Environmental Sciences, 24(4), 610-616(2012).
[25]S. Nagireddi, V. Katiyar, R. Uppaluri, "Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin", International Journal of Biological Macromolecules, 94, 72-84(2017).
[26]M. Li, Z. Zhang, R. Li, J.J. Wang, A. Ali, "Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan", International Journal of Biological Macromolecules, 86, 876-884(2016).
[27]A.F. Shaaban, D.A. Fadel, A.A. Mahmoud, M.A. Elkomy, S.M. Elbah, "Synthesis and characterization of dithiocarbamate chelating resin and its adsorption performance toward Hg(II), Cd(II) and Pb(II) by batch and fixed-bed column methods", Journal of Environmental Chemical Engineering, 3, 208-217(2013).
[28]S. Ding, X. Zhang, X. Feng, Y. Wang, S. Ma, Q. Peng, W. Zhang, "Synthesis of N,N'-diallyl dibenzo 18-crown-6 crown ether crosslinked chitosan and their adsorption properties for metal ions", Reactive and Functional Polymers, 66, 357–363 (2006).
[29]H.R. Yua, J.Q. Hua, Z. Liu, X.J. Jua, R. Xie, W. Wang, L.Y. Chu, "Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment", Journal of Hazardous Materials, 323(B), 632-640 (2017).
[30]M.A. Lashley, N. Mehio, J.W. Nugent, E. Holguin, C.L.D. Thanh, V.S. Bryantsev, S. Dai, R.D. Hancock, "Amidoximes as ligand functionalities for braided polymeric materials for the recovery of uranium from seawater", Polyhedron, 109, 81–91(2016).
[31]S.M. El-Bahy, Z.M. El-Bahy, "Synthesis and characterization of polyamidoxime chelating resin for adsorption of Cu(II), Mn(II) and Ni(II) by batch and column study", Journal of Environmental Chemical Engineering, 4, 276-286(2016).
[32]B. Gao, Y. Gao, Y. Li, "Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions", Chemical Engineering Journal, 158, 542-549(2010).
[33]Q. Cao, Y. Liu, C. Wang, J. Cheng, "Phosphorus-modified poly(styrene-co- divinylbenzene)–PAMAM chelating resin for the adsorption of uranium(VI) in aqueous", Journal of Hazardous Materials, 263, 311-321(2013).
[34]W.S.W. Ngah, S. Fatinathan, "Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies", Journal of Environmental Management, 91, 958-969(2010).
[35]N. Pekel, B. Salih, O. Guven, "Metal ion promoted hydrogels for bovine serum albumin adsorption: Cu(II) and Co(II) chelated poly[(N-vinylimidazole)-maleic acid]", Journal of Industrial and Engineering Chemistry", 21, 89-96(2005).
[36]M.Z. Corazza, E.S. Ribeiro, M.G. Segatelli, C.R.T. Tarley, "Study of cross-linked poly(methacrylic acid) and polyvinylimidazole as selective adsorbents for on-line preconcentration and redox speciation of chromium with flame atomic absorption spectrometry determination", Microchemical Journal, 117, 18-26(2014).
[37]A. Duran, M. Soylak, S. Ali Tuncel, "Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal remova", Journal of Hazardous Materials, 155, 114-120(2008).
[38]P. Liu, L. Jiang, L. Zhu, J. Guo, A. Wang, "Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions", Journal of Industrial and Engineering Chemistry, 23, 188-193(2015).
[39]H.L.A. El-Mohdy, E.A. Hegazy, E.M. El-Nesr, M.A. El-Wahab, "Metal sorption behavior of poly(N-vinyl-2-pyrrolidone)/(acrylic acid-co-styrene) hydrogels synthesized by gamma radiation", Journal of Environmental Chemical Engineering, 1, 328-338(2013).
[40]W. Maatar, S. Boufi, "Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent", Carbohydrate Polymers, 126, 199-207(2015).
[41]Q. Rong, F. Feng, Z. Ma, "Metal ions doped chitosan–poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer", Biosensors and Bioelectronics, 75, 148-154(2016).
[42]Isabel U. Castro, F. Stuber, A. Fabregat, J. Font, A. Fortuny, C. Bengoa, "Supported Cu(II) polymer catalysts for aqueous phenol oxidation", Journal of Hazardous Materials, 163, 809-815(2009).
[43]M. Li, Y. Gong, W. Wang, G. Xu, Y. Liu, J. Guo, "In-situ reduced silver nanoparticles on populus fiber and the catalytic application", Applied Surface Science, 394(1), 351-357(2017).
[44]周佩蓁,"側鏈具1,3-丙二胺之螯合樹脂吸附與分離水中重金屬子之研究",南臺科技大學化學工程與材料工程研究所碩士學位論文(2016).
[45]H. Ge, T. Hua, X. Chen, “Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template”, Journal of Hazardous Materials, 308, 225-232(2016).
[46]C.C. Wang, C.Y. Chen, C.C. Huang, C.Y. Chen, J.F. Kuo, "Permeation of oxygen/nitrogen in cobalt-chelated copoly(EDTA-MMA-BA) membranes", Journal of Membrane Science, 177, 189-199(2000).
[47]O. Hosseinkhani, A. Kargari, H. Sanaeepur, "Facilitated transport of CO2 through Co(II)-S-EPDM ionomer membrane", Journal of Membrane Science, 459(1), 151-161(2014).
[48]Gayathri Prabhu T. Ganesh, R. Ravi, B. Deb, "A pragmatic approach to methyl methacrylate based solid polymer electrolyte processing: A case study for electrochromism", Solar Energy Materials and Solar Cells, 140, 17-24(2015).
[49]K. Kimura, M. Yajima, Y. Tominaga, "A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature", Electrochemistry Communications, 66, 46-48(2016).
[50]J. Wang, H. Chen, Z. Chen, Y. Chen, D. Guo, M. Ni, S. Liu, C. Peng, "In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone", Materials Science and Engineering C, 63, 142–149(2016).
[51]C.Y. Chen, C.Y. Chen, "Formation of silver nanoparticles on a chelating copolymer film containing iminodiacetic acid", Thin Solid Films, 484, 68-72(2005).
[52]孫嘉宏,"奈米銀、奈米硫化銀、奈米氯化銀/高分子複合材料的合成與應用",南臺科技大學化學工程與材料工程研究所碩士學位論文(2014).
[53]C.L. Chiang, C.Y. Chen, L.W. Chang, "Purification of Recombinant Enhanced Green Fluorescent Protein Expressed in Escherichia coli with New Immobilized Metal Ion Affinity Magnetic Absorbents", Journal of Chromatography B, 864, 116-122(2008)
[54]M. Min, L. Shen, G. Hong, M. Zhu, Y. Zhang, X. Wang, Y. Chen, B.S. Hsiao, "Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution", Chemical Engineering Journal, 197, 88-100(2012).
[55]Ira. N. Levine, "Physical Chemistry", 4th Ed.;New York: McGraw-Hill, Inc., 1995(Chapter 13.)
[56]K. Jainae, N. Sukpirom, S. Fuangswasdi, F. Unob, "Adsorption of Hg(II) from aqueous solutions by thiol-functionalized polymer-coated magnetic particles", Journal of Industrial and Engineering Chemistry, 23, 273-278(2015).
[57]A.A. Donia, A.A. Atia, K.Z. Elwakeel, "Selective separation of mercury(II) using a synthetic resin containing amine and mercaptan as chelating groups", Reactive and Functional Polymers, 65, 267-275 (2005).
[58]X. Yao,H. Wang, Z. Ma, M. Liu, X. Zhao, D. Jia, "Adsorption of Hg(II) from aqueous solution using thiourea functionalized chelating fiber", Chinese Journal of Chemical Engineering, 24(10), 1344–1352(2016).
[59]Q. Yuan, N. Li, Y. Chi, W. Geng, W. Yan, Y. Zhao, X. Li, B. Dong, "Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions", Journal of Hazardous Materials, 254-255, 157-165(2013).
[60]Z. Xiao, F. Peng, X. Li, R. Zhang, W. He, T. Zhou, "Surface modification of malonic acid-catalyzed carbon xerogels and their high performance for adsorption of Cu (II) ions", Surface and Interface Analysis, 45, 1869-1877(2013).
[61]H. Egawa, M. Nakayama, T. Nonaka , E. Sugihara, “Recovery of uranium from sea water. IV. Influence of crosslinking reagent of the uranium adsorption of macroreticular chelating resin containing amidoxime groups”, Journal of Applied Polymer Science, 33, 1993-2005(1987).
[62]E. Pehlivan, T. Altun, "The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50W synthetic resin", Journal of Hazardous Materials, 134, 149-156(2006).
[63]X.J. Hu, J.S. Wang, Y.G. Liu, X. Li, G.M. Zeng, Z.I. Bao, X.X. Zeng, A.W. Chen, F. Long, "Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics", Journal of Hazardous Materials, 185, 306-314(2011).
[64]X. Jinga, F. Liua, X. Yanga, P. Linga, L. Lia, C. Longa, A. Lia, "Adsorption performances and mechanisms of the newly synthesized N,N′-di(carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media", Journal of Hazardous Materials, 167, 589-596(2009).
[65]C. Zhu, F. Liu, C. Xua, J. Gao, D. Chen, A. Li, "Enhanced removal of Cu(II) and Ni(II) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism", Journal of Hazardous Materials, 287, 234-242(2015).
[66]K.Z. Elwakeel, E. Guibal, "Selective removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular hybrid material", Chemical Engineering Journal, 281, 345-359(2015).
[67]S.A.M. Idris, "Adsorption, kinetic and thermodynamic studies for manganese extraction from aqueous medium using mesoporous silica", Journal of Colloid and Interface Science, 440, 84-90(2015).
[68]M.G. Mahfouz, A.A. Galhoum, N.A. Gomaa, S.S. Abdel-Rehem, A.A. Atia, T. Vincent, E. Guibal, "Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies", Chemical Engineering Journal, 262, 198-209(2015).
[69]Q. Liu, Q. Liu, W. Ma, W. Liu, X. Cai, J. Yao, "Comparisons of two chelating adsorbents prepared by different ways for chromium(VI) adsorption from aqueous solution", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 511, 8-16(2016).
[70]M. Ghorbani, S. Nowee, N. Ramezanian, F. Raji, "A new nanostructured material amino functionalized mesoporous silica synthesized via co-condensation method for Pb(II) and Ni(II) ion sorption from aqueous solution", Hydrometallurgy, 161, 117-126(2016).
[71]A.A. Galhoum, M.G. Mahfouz, N.M. Gomaa, T. Vincent,E. Guibal, "Chemical modifications of chitosan nano-based magnetic particles for enhanced uranyl sorption", Hydrometallurgy,168, 127-134(2017).
[72]R. Zhao, X. Li, B. Sun, H. Ji, C. Wang, "Diethylenetriamine-assisted synthesis of amino-rich hydrothermal carbon-coated electrospun polyacrylonitrile fiber adsorbents for the removal of Cr(VI) and 2,4-dichlorophenoxyacetic acid", Journal of Colloid and Interface Science, 487, 297-309(2017).
[73]R. Chang, "Chemistry", 9th Ed.;New York: McGraw-Hill, Inc., page 327(2008).

電子全文 電子全文(網際網路公開日期:20220701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top